Epoch: An Ontological Framework to Support Clinical Trials Management

Amar Das, MD, PhD
Assistant Professor
Stanford Medical Informatics
Stanford University

Acknowledgments

Epoch Group @ Stanford Medical Informatics

Ravi Shankar Martin O'Connor

Susana Martins Samson Tu

Noah Zimmerman

Immune Tolerance Network

Jeff Bluestone Dave Parrish

Peter Sayre Vicki Seyfert

Kathy McCafferty Keith Boyce

Chuck Borromeo Manizhe Payton

Trang Gisler

... and many others ...

Challenges of clinical trials management

- The design and execution of complex clinical trials involve collaborations among many groups
- The use of disparate software tools for trial design and execution can lead to
 - Lack of formalization in trial specification
 - Ambiguities in trial implementation
 - Increased efforts in trial management
- The use of ontologies can enable a shared semantic understanding of clinical trials among personnel and software

The Immune Tolerance Network (ITN) accelerates the development of immune tolerance therapies

- Investigator-initiated clinical trials of novel tolerance-promoting therapies in
 - Autoimmune diseases
 - Transplantation
 - Allergy and Asthma
- Provides services to undertake comprehensive mechanistic studies that complement each trial

Major stages in an ITN clinical trial are study specification, implementation, and assessment

This presentation discusses the use of ontologies to support clinical trials in ITN

The need for semantic integration

A suite of ontologies

A knowledge-based architecture

A variety of questions are posed by different personnel during each stage of a clinical trial

Specification

Implementation

Management

Example questions related to trial specification

- Is there another protocol similar to this one?
- What clinical activities or mechanistic assays should be planned?
- What specimens need to be collected to perform an assay?
- At which visits should these activities occur?

Example questions related to trial implementation

- When is the next visit for this participant?
- What mechanistic assays should performed for this visit?
- Where should this specimen container be shipped?

Example questions related to trial management

- How many participants are in the follow-up period?
- What are the results of an assay for a particular participant before transplant?
- What is the enrollment data by sites for these four trials?
- What are the total number of specimens accessioned?

Personnel collaborate to specify, implement, and manage a clinical trial

Multiple communication modalities are used in this collaboration

Trial information encoded by different groups is needed in queries and reports

When enterprise-wide knowledge about trials is not formally encoded, problems can arise

- Verifying data integrity in real time is difficult
- Resolving inconsistencies after a trial has started may be required
- Integrating data generated from different software tools is hard
- Performing complex analyses across multiple trials may be very limited

We have created an ontological framework to enable standardization and integration

Our ontology work focuses on developing knowledge-based methods

1. To help acquire and maintain knowledge for trial specification

2. To configure software tools for trial implementation

3. To support ad hoc data analysis for trial management

Our suite of ontologies is based on past and existing modeling work and on ITN requirements

Schedule of Events lists the clinical activities and when they should be performed

(Title removed)																
	Day															
	-1	0	2	7	14	21	28	35	42	56	70	84	112	168	252	364
	Visit															
	-1¹	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Medication Administration																
	3x/7 days															
daily																
General Assessments																
Informed consent	Х															
Inclusion/exclusion criteria	Х															
Laboratory Assessments																
Sirolimus trough level			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х				
Hematology	Х				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Comprehensive chemistry	Х				Х	Х		Х			Х		Х		Х	
Basic chemistry							Х		Х	Х		Х		Х		Х
Amylase ⁴	Х				Х		Х		Х	Х		Х				
Thyroid function	х							х				х		Х		х
ITN Core Mechanistic Studies																
Whole blood-EBV viral load ⁵	Х				Х	Х	Х	Х	Х	Х	Х	Х		Х		Х
Whole blood_CMV trival load ⁶	Х				Х	Х	Х	Х	Х	Х	Х	Х		Х		Х

³ PPD test must be read 48-72 hours after placement.

⁴ If amylase level is increased, follow-up lipase level will be performed.

Schedule of Events lists the clinical activities and when they should be performed

³ PPD test must be read 48-72 hours after placement.

⁴ If amylase level is increased, follow-up lipase level will be performed.

Specimen Workflow Table contains information on the processing of biological specimens

		Blood/											
	Collection	Specimen		Shipping		Final		Collect					
Standard Term	Tubes	Volume	Processing/Shipping	Instruction	Destination	Destination	Assay Instructions						
	MECHANISTIC ASSAYS												
Whole Blood- Quantitative PCR for CMV and EBV	1 x 2 ml K₂EDTA	1	Invert to mix, leave at ambient temperature, and ship	Ship o/n ambient temperature			Results sent directly to the site. Note: If EBV levels rise above 2000 copies/ml and pos for IgG or IgM, samples to be collected weekly until levels have been						
Reactivation	lavendar top	2 ml	immediately	Mon-Wed	Viracor	Viracor	reduced below 2000 copies per ml	-1,3,4,5,6,7					
Serum- Autoantibody Analysis	1 x 6.0 ml red top tube	6.0 ml	Aliquot serum into 13 cryovials and freeze <-70℃.	Dry ice Mon - Wed only.	ITN Repository	Autoantibod y Core	Antigens: GAD65, ICA512/IA-2, insulin, ICA Note: two vials will be sent at screening, one to each autoantibody core for testing	-1,10,12,14					
PBMC-Flow Cytometry Intracellular Staining	6 x 10 ml Kendall glass Na heparin		1 .	temperature,	ITN PBMC Isolation		See the MAR Tetramer: DR4-GAD, DR4-IA-2, DR3-						
PBMC-T Cell Assay	tubes	60 ml	collection	Mon-Fri only.	Core	ITN Core	proinsulin, ELISPOT	0,5,8,10,12					
Whole Blood-Gene Expression Profiling			Invert to mix thoroughly for 10 to 20 seconds and freeze at - 70°C	1 -	ITN Repository	RT PCR Core Microarray Core	Human U133 Chip 2.0 Plus	0,10,12,14					

Specimen Workflow Table contains information on the processing of biological specimens

A suite of Epoch ontologies encapsulate clinical trial knowledge

The ontologies are specified in OWL using the Protégé-OWL editor

The Protocol Ontology consists of concepts and their attributes in the clinical trial domain

Documentation on each class and its attributes are maintained in the OWL ontology itself

We are building custom user interfaces to enter and browse specific clinical trials

Instantiation of the Epoch ontologies generates clinical trial knowledge bases

The Epoch architecture supports knowledgedriven specification of software tools

In conclusion, our work on Epoch allows

- A central, modifiable repository of knowledge to encode shared semantics among users and software tools
- A knowledge-based architecture for trial design, implementation and management
- The use of ontologies for inferring relationships among trial data for queries and reports
- The ability to use reference ontologies to annotate the knowledge used in clinical trial management

