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1. Introduction

Relevance logic has become ontologically fertile. No longer is the idea of relevance restricted in
its application to purely logical relations among propositions, for as Dunn has shown in his
(1987), it is possible to extend the idea in such a way that we can distinguish also between
relevant and irrelevant predications, as for example between “Reagan is tall” and ‘“Reagan is
such that Socrates is wise”. Dunn shows that we can exploit certain special properties of identity
within the context of standard relevance logic in a way which allows us to discriminate further
between relevant and irrelevant properties, as also between relevant and irrelevant relations. The
idea yields a family of ontologically interesting results concerning the different ways in which
attributes and objects may hang together. Because of certain notorious peculiarities of relevance
logic, however,! Dunn’s idea breaks down where the attempt is made to have it bear fruit in
application to relations among entities which are of homogeneous type.

Let us suppose that is red and is prime are relevant properties in the sense of Dunn. Then the
formal machinery underlying his approach dictates that so also are: is either red or prime, is both
red and prime, is if red then prime, and so on.* This consequence is surely both counterintuitive
and in conflict with Dunn’s stated aims. Still worse, however, are the implications in relation to
what Dunn calls “relevant properties of pairs”. A pair <@, b> has such a relevant property, Dunn
tells us,’ iff there are relevant monadic properties F and G—relevant monadic properties of any
old sort—such that Fa v Gb. But this seems to be a good first candidate definition of what one
might better call an irrelevant property of a pair.

Can we, then, provide a more adequate account—a means of sifting out the relevant pairs
(Gilbert and Sullivan, Anderson and Belnap, Xanthippe and Socrates) from the irrelevant pairs
(Napoleon and the moon, the number 2 and the Eiffel Tower, Quine’s left foot and Chisholm’s
right ear)? Can we, more generally, find a means of sifting out the relevant sets from those
irrelevant sets which, while constituting a formal unity, lack all material connectedness among
their members. Examples of relevant sets would be: The Berlin Philharmonic Orchestra, the set
of molecules in this nut, the natio hungarica. Examples of irrelevant sets would be: {Quine,

' Above all because of the continued acceptance of the validity of p — p v Q.
*Op. cit.,, MS p. 362.

*0Op. cit,, MS p. 359.



Gandhi, the number three}; {Napoleon, the moon, redness}, and so on. Intuitively, manifolds or
pluralities in the first group (“organic” or “integral” wholes) seem to be admissible as entities in
their own right, i.e. in addition to the objects which are their members. This is first of all because
there are specially intimate relations among these members which serve to unify them into a
whole. But it is also, and no less importantly, because each of the given wholes would seem to
enjoy a certain completeness or separateness in relation to the surrounding environment (it
would enjoy a special place within the family of those sets in which it is included). The
reflections which follow constitute one first step towards making this somewhat metaphorical
idea more precise. They have been inspired on the one hand by Dunn’s Relevant Predication
(though any possible formal connection to relevant logic as such, or indeed to relevant set theory
as standardly understood, will raise its head only at the very end). On the other hand they owe
much to unpublished work of Kit Fine on the formal ontology of dependence.* There is
moreover an interesting relationship to the work of Orlowska and Weingartner (1986), where
relevance relations between predicates are introduced.

2. Relevance Relations

We shall write ‘XRy’ for ‘X is related to y’. This may mean: there is a relevant relation (in
something like Dunn’s sense) connecting X to y. Or it may mean any or all of: X is in spatial
contact with y, X is consanguineous with y, X is similar to y, X has business dealings with y, X
lives in the same place as Yy, X looks a bit like y from a distance, X is causally bound up with v,
and so on.” (In general it seems that what relevant sets there are will be determined by a number
of heterogeneous relations of this sort, perhaps acting in consort. The investigation of the
consequences of such collaboration amongst different relevance relations will not, however, be
attempted here.) All that matters here is that R be some symmetric and reflexive relation defined
across a space of objects upon which a set-theoretical structure is then built up in the usual way.°

Consider, now, the function B defined on this space of objects in such a way that:

B'(x) = {x}
B*(x) :=B*x) U {y: 3z € B¥X) A YRz)} for a a successor ordinal
B%(x) = uUp<a Bp(x) for o a limit ordinal

B is an expanding function; thus it has a fixed point o, for which

B%, (x) = B*,"(x). (In fact we can prove that o, = ®.)

*The latter is summarized in Simons (1987), pp. 311{f.

*We may wish to allow also, for each (relevant?) property F, the relevant relation: X and y
are both such as to have F. In this way the set of F’s, too, may turn out to be a relevant set.

Even the requirement of reflexivity is inessential, since we can of course for any
symmetric R define a reflexive relation R™ by XRy:= Xx=y v xRy.
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If we now define
xR’y =y € B%,(x),

then R* is an equivalence relation which partitions the space of Urelemente into maximal classes
of what we might call (direct and indirect) relatives. B defines a basis for a topology on this
space whose non-empty open sets are all the unions of the B*(x).

The B%(x) are, intuitively, families around X generated by relatednesses of degree < a. If we
define d(x, y) as the least o such that y € B%*(x), then d provides a measure of the degree of the
relatedness of X and y. The function thus defined will be seen to satisfy the usual requirements
for a distance function, namely

dix,y)=0iffx =y,
d(x, y) = d(y, x)
d(x, z) < d(x, y) +d(y, 2).

However d is not, in general, defined. If X and y belong to different R*-equivalence classes,
then there is no relation at all between them, however indirect. Hence, also, there is no sense to
the idea that we might measure their relatedness. A fully metric space is, however, obtained if
we add the (independently not unattractive) assumption:

VX, y (XR'Y)

to the effect that the space of objects is unified (connected) in the sense that it does not collapse
into separate regions mutually inaccessible via R.

3. Branches, Families, Cores
What, now, are we to allow as the relevant sets? One solution would be to admit precisely the B%,
perhaps limiting ourselves (according to scruples) to finite o.. In light of the non-transitivity of R, the very
scrupulous will insist on a restriction to those cases where o < 1. It turns out, however, that there are
certain subsets of the B'(X) which enjoy just that special sort of rounded-offness from the outside
world, and whose members enjoy just that specially intimate sort of relatedness, which we said ought to
be characteristic of the relevant sets.

Let us first of all define a branch to be any set X all of whose members are directly related by
R. That is:

Br(X) = Vx,y € X (xR"y).”

"This definition enables us to generalize the notion of relevance to apply not merely

within but also between sets, for example by setting:
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Trivially, by reflexivity of R, all singletons are branches. Moreover, and no less trivially, we
have

(XY A Br(Y)) = Br(X).

A family may be defined as a union of branches whose intersection is non-empty.® Every
non-singleton branch is a subset of some B'-set, and every B'-set (and every branch) is a family,
but there seem to be no entailments in the opposite direction.

Br embraces a tighter restriction than B'(X). The latter requires only that there be some one
(mother) object (X) to which all members of the given B'(x) are directly related. Br, in contrast,
requires that all objects be directly related to each other. It will not do, however, to take
branches as the relevant sets, for a branch X may be formed by selecting some objects at random
from some other branch Y. Branches may accordingly lack that rounded-offness which is to be
part of what justifies our treatment of relevant sets as entities in their own right.

Let us, therefore, introduce the notion of a maximal branch or Net, defined by:

Net (X) = YY(Br(X U Y) <> Y < X).

It will still not do to restrict ourselves to maximal branches, however, for it seems clear that
some relevant sets will be included in others (as for example the wind ensemble is included in
the entire orchestra), and this is clearly ruled out if relevant sets are always maximal.

Yet still, we are not too far from the notion we require. A non-maximal branch X is typically
contained within the intersection of a larger family of maximal branches which emanate from X
is typically contained within the intersection of a larger family of maximal branches which
emanate from X in different directions. In each such case there will be what one might call the
core of this family, consisting of the largest set of family-members included in all the maximal
branches in which X is included. Let us therefore define the core generated by X as the set
consisting of all those members of this larger family circumcliding X who are members of all
the maximal branches extending X.

We shall say that Y is a maximal extension of X, or

XRY =Br(X U Y).

And then, if the definition of branch is itself similarly generalized, it will follow that the property
of branchhood is preserved under the operation of taking power sets. Here, however, we shall
concentrate exclusively on set of Urelemente— which will also mean that the ideas here offered
will be capable of being transferred relatively easily to the field of mereology.

¥This definition starts out from the idea of a family as a set of objects existing
simultaneously. We might, however, define a lineage (or family-in-the-Wittgensteinian-sense) as
aunion of branches X;, ... , X, for which it is required only that each of the X; " X;,; be non-

empty.
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X<<Y:= Xc YA Net(y).
We now need to adopt the following non-trivial statute of limitations:
VX Br(X)— 3IY (X<<Y)).

to the effect that every branch is included in some maximal branch, a condition which can be
verified only by appeal to some form of the Axiom of Choice. Suppose X is a non-empty set of
sets which satisfies the condition that if C is a chain in < X, < >, then Uye. XeX. Zom’s Lemma
tells us that X has a maximal member. If, now, we let X be the set of all branches including the
branch X, and if we suppose Y, < ... Y; ...is a chain in X, then the union of the Y; is also a branch;
thus it, too, is a member of X. Hence we can infer that X has a maximal branch. If we now
define, for each branch X, its core

CX) =y Y

then because every branch has at least one maximal extension we know that C(X) is defined for
all branches X.

4. The Structure of Restricted Set Theory
The core generated by X has the nice property that it both preserves the inter-relatedness enjoyed
by the members of X and is at the same time a natural completion or rounding-off of X.
Moreover, it is possible for one core to be included within another.

The operation of taking cores is similar to, though not identical with, a topological closure
operation. For while we have, for all branches X and Y,

. XcCX) (Expansiveness)
II. C(C(X))=C(X) (Idempotence)
. Xc Y- C(X)c C(Y) (Isotonicity)’
IV. CXuY)—> CX)uC(Y) (Additivity)

which is what would be required if C were to yield a full closure algebra. Hence also—despite
the presence of

V. C(@)=0

°1. follows trivially from the definitions. To prove IL. It suffices to show that C(C(X))
C(X), i.e. that X << Y — C(X) <<'Y, which follows trivially from the definition of Net. To prove
II1., suppose X € C(X), then VZ((X < Z A Net(Z)) > x € Z). Whence also X belongs to any Z

such that Y < Z A Net(2).
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—the underlying structure is not that of a full topological space. To see that C is not additive,
consider the family defined by Figure 1:

x' y'
X * % *y
z

Figure 1

where the links connecting nodes signify that these nodes are related by R. Now set X={x},
Y={y}, then C(X)= {x}, C(Y)={y}, but C(X U Y)= {x, Y, z}.

The failure of additivity tells us that cores cannot in general be split apart, as it were, into
constituent cores. Or, from the opposite perspective, it tells us that the forming of unions among
relevant sets is no inconsequential matter. Hammer has described the additivity axiom as the
axiom of sterility: it requires that two sets cannot produce anything by union that one of them
cannot produce alone (Hammer 1962, p. 65). Relevant sets are not sterile in this sense, since if
they are unifiable at all, then their relevant union may incorporate something new. The notion of
relevant set may in this sense capture part of what is involved in the idea of an emergent whole.
In any case it seems to give a formally precise rendering of the idea that there may exist unities
at higher levels which are not merely the result of a summing together of unities existing lower
down. '

If;, now, the space of relevant sets does not have the structure of a full closure algebra, then
the question arises as to what is structure is. Axioms L-III. In fact determine a pre-closure
algebra, a structure first studied extensively by Ore in 1943. Hammer, in particular, has shown
in a series of papers that even within this very modest structure it is possible to develop

'The notion of relevant set may thereby also throw some philosophically interesting light
on the idea that, through an appropriate act of collection or “colligation”, any definite objects of
thought may be brought together into a whole. Suppose that the relevance of X and y is
established solely by such an act of collection z. Then it seems reasonable to suppose that the

smallest relevant set containing X and Yy will contain z also.
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analogues of a number of fundamental topological notions.'" And according to Fine it is a

preclosure algebra that “is the mathematical structure underlying the theory of dependence
relations put forward by Husserl in his 3rd Logical Investigation ‘On the Theory of Wholes and

999 12

parts™.

5. Principles of Restricted Set Theory

If we are right in supposing that the relevant sets are (for some appropriate R) just the core sets
as defined above, then the question arises as to how restricted set theory would differ from set
theories of the more usual sort. If R is the set of relevant sets, then we have X € R — X = C(X).
From this we can easily prove that <R ; m>, is a complete non-distributive meet-semilattice. This
follows from:

X,YeR->XnNY=C(XnNY),

which in turn follows easily from the definitions.

Variables X, Y, Z, ... shall henceforth range over relevant sets. Since relevant intersection as
defined on R differs not at all from normal intersection, we shall represent it by means of ‘N’ as
usual. Membership and set inclusion, too, like the null-set, will turn out to coincide with the
membership, inclusion and null-set of normal set theory. Only with the operation of relevant
union, defined by

XY =C(X UY)

do problems arise, since C(X U Y) is not, in general, defined. Where it is defined, however (for
which a necessary and sufficient condition is that X and Y together form a branch), then it is
unique. Moreover, \® is commutative. It is associative, in the sense that, if (X R Y) U® Z) is
defined, then so also is X R (Y UR Z), and the two are equal. And it satisfies the usual

XU X=X
XS XNY)=X
XNn(XWY)=X

Further, the equivalence of X — Y and X URY =Y is preserved, and we have also the reassuring

VXX RY=X)>Y=0

"'See Hammer 1960, etc. and compare Netzer 1978.

"2Cf. Fine (unpublished). Husserl’s discussion of separation and of connectedness via

chains in §§ 8 and 20 of this work may also be of relevance to the issues under discussion here.
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That restrictive set theory is non-distributive can be seen if we consider again the family
defined in Fig. 1 above. (To see the failure of X " (Y U*Z)=(X NnY) R (X N 2),set X = {z},
Y= {y}, Z ={z}.) However, we do have the distributive inequalities (where all the relevant unions
are assumed to be defined):

XA R (XNZ)c X N (Y R2),
X (YNZ)c(XSY)n (X R 2Z),
XAY)R(YNZ)RZAX) X RY) A (YR Z)A(Z R X),

and we also have the modular inequality:
XA S(XNZ)c X n(Y S (XN2)),

Perhaps one of the most interesting features of restricted set theory is that the operation of
taking singletons is not in general defined, something which nicely captures our intuition that
there are objects—for example smiles—which in and of themselves do not form self-existent
wholes but rather stand in need of other objects in order to exist. X is dependent or non-self-
existent in this sens iff there is some Yy such that all objects to which X is related are related also
to y. The smallest relevant set including X in such circumstances will include also y. The idea of
dependence is similar, in some respects, to Frege’s idea of unsaturatedness. Unlike Frege,
however, we can distinguish in our present framework not only unilateral but also mutual
unsaturatedness, for is X depends for its existence on Y in the sense indicated, then it may or may
not be the case that y also depends for its existence on X. In a system like Wittgenstein’s
Tractatus, where the Sachverhalte might be said to serve as the relevant sets (integral wholes) in
our present sense, it seems that all simple objects are mutually unsaturated in this sense.

We may now define the notion of a relevant atom, as follows:

Atom(X) =YY (@ c Y X - Y=T v Y =X).

Clearly atoms are mutually exclusive, and every atom X is join-irreducible, in the sense that if X
=Y U Z, then X = Y or X = Z. As Figure 1 makes clear, however, not all join-irreducible
elements are atoms.

Finally, it goes without saying that the operation of taking complements, too, is not in
general defined within the theory of relevant sets. It seems, indeed, that (for natural
interpretations of the theory) it is never defined.'? Unity, as Aristotle might have said, is not to be
arrived at through privation.

Even the complement, Y \ X, of X relative to Y, characterised by X c YA XN Y \ X =
D A X RY\ X =Y)), is not always defined, as is clear for example from the family:

N
N



6. Models of Restricted Set Theory

(1) Let X, Y, ... range over points in three-dimensional Euclidean space and set xRy iff [x—y| <
1. Then the relevant sets are all intersections of closed balls of unit diameter.

(i) Let X, vy, ... range over people, and set XRy iff X is directly related to (is a sibling, parent,
child or spouse of) y. Then the relevant sets are all maximal family groups of siblings-plus-
parents, together with all singletons of non-dependent individuals (where a dependent individual
is for example a child with no children of its own).

() Let X, y, ... range over ultimate, microphysical particles and set XRy iff there is some
(physical, chemical, biological,...) object to which both x and y belong. The relevant sets are then
the sets of particles constituting objects at different levels, and inclusion relations between
relevant sets will mimic the constituency relations between the corresponding objects.

@iv) Let x, y, ... range over Urelemente and set xRy iff X and y exist simultaneously. The
relevant sets are then those sets of objects which at some time actually exist. There are two
different ways of understanding this idea. On the one hand we might regard the relevant sets as
constituting a sub-set of the sets classically conceived and as existing no less abstractly and
timelessly than these. On the other hand however we could see the set of relevant sets a changing
from moment to moment; R would then, as it were, bring temporality into the realm of sets.

(iv) Let X, V, ... range over topics in some universe of discourse, and suppose XRy is a
relevance-relation defined on X, y, ... in some intuitively acceptable way. The relevant sets will
then be organized hierarchically, in light of the fact that topics will stand in relations of greater
or lesser generality. Define the content T(p) of a proposition p as the set of its topics. We now let
p, 0, ... range over those propositions which are themselves relevant, in the sense that their
respective contents are each such as to be included in a relevant set. We then define relevance
between propositions by:

pRq iff T(qQ) is included in some relevant set.

We can now exploit this idea to cope with our conflicting intuitions as to the validity of
entailments like p — p v (. There is on the one hand a long-standing intuition to the effect that a
sentence of the form A — B can express an analytic truth only if it is the case that T(B) < T(A),"
Anderson and Belnap, on the other hand, point out that we are predisposed to accept as analytic
also a case like all brothers are siblings which (give or take the quantifiers) they would have us
regard as an instance of p — p v ( (Anderson and Belnap, p. 155). Hence, they argue (and
without pausing for air), that p — p v q is valid in general. Surely, however, we can find some
way to allow the sibling-brother case without opening the floodgates to p — p v ( in general.
This is in fact precisely what is achieved by imposing on valid entailments of the form A—B the
restriction that they be relevance-preserving in the sense that T(A) W T(B) should be included in

a relevant set.
Previous attempts at using topic- or content-related notions as a means of carving out the

relevant entailments have failed, we might argue, because they have employed set-theoretic

“See, e.g., Parry 1933.



means which are themselves at bottom still irrelevant in orientation. This is particularly clear for
example in the case of Carnap and Bar-Hillel (1952), who would have it that the content of the
negation of a proposition is the usual set-theoretic complement of the content of the proposition
itself. Even the more sophisticated framework described by Dunn (1976, §6) still admits the
formation of contents via unrestricted union, and so he, too, is forced to allow p — p v q to slip
through the net. By exploiting the resources of a restricted set theory of the sort described above,
however, it may be possible to do justice to the idea of a relevance logic by allowing relevance
among propositions to be determined, in part at least, by those ontological relevance relations
which obtain amongst the objects in the world.

7. Relevant Logic

Let A, B, ... range over those propositions which are themselves relevant, in the sense that their
respective contents are each such as to be included in a relevant set. We can now define
relevance between propositions by:

ARB = T(A) U T(B) is included in some relevant set.

Define S; to be that subset of the set of formulae of the propositional calculus which satisfies the
following conditions:

(1) all atomic formulae are in Sg,
(i) —Bisin Sgiff Bisin Sg,
@) (B—>C),(Bv C),(BA C),arein Sy iff B and C are in S; and BRC.

What, now, can be said about the set S; N PC, defined as the intersection of the set S; with the
set of PC-valid formulae? If R is defined so weakly that ARB for all A and b, then S; N PC is just
the set of propositional tautologies. If, on the other hand, R is defined in such a way that, for
atomic formulae p and g, pRq iff p = g, then Sy N PC consists exclusively of tautologies in a
single sentential variable. Between these two extremes there is a range of possibilities, all of
which exclude formulae like p — p v q but at the same time allow in principle certain cases of
A—B where the content of B goes beyond the content of A. Such implications would express
what we might call synthetic truths, the analytic implications being implications identified as

satisfying.

(A) T(B) < T(A).

Our approach, therefore, represents a generalisation of those varieties of relevance logic which
rest on taking principle (A) as a constraint on validity. The family of such logics embraces,

familiarly, not only the original system of Parry (1933) and its modification by Dunn (1972), but
also, and not least, the A,-system of Weingartner and Schurz (1986).
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