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Abstract.

This paper develops a taxonomy of qualitative spatial relations for pairs of regions, which
are all logically defined from two primitive (but axiomatised) notions. The first primitive is
the notion of two regions being connected, which allows eight jointly exhaustive and pairwise
disjoint relations to be defined. The second primitive is the convex hull of a region which allows
many more relations to be defined. We also consider the development of the useful notions
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between pairs of regions. We conclude by discussing what kind of criteria to apply when
deciding how fine a taxonomy to create.
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1 Introduction

Although the use of interval temporal logics has been an active research area in Al for some
time, the analogous development of ontologies for space and spatial logics based on regions
has only relatively recently started to become a serious research activity (e.g. Pribbenow and
Schlieder (1992), Narayannan (1992)). Various approaches have been promulgated; for example
one can simply use Allen’s (1983) temporal relations on each of the cartesian axes to specify the
qualitative relationship between two regions (e.g. Hernandez (1992), Mukerjee and Joe (1990)),
but this has the disadvantage of either requiring knowledge about the absolute orientation of the
two regions or their orientation relative to a fixed viewpoint. For many applications one might
only have local information available. Qualitative orientation representation and reasoning has
been explicitly investigated by Zimmerman and Freksa (1993) and Mukerjee and Joe (1990)
amongst others.

Given a qualitative spatial knowledge there are various kinds of reasoning that have been
investigated or are desirable. For example one can perform a qualitative spatial simulation
(Cui, Cohn and Randell 1992), or reason spatially about physical systems such as a force
pump (Randell, Cohn and Cui 1992b), or the heart (Gotts, Hunter, Hamlet and Vincent 1989).
Another obvious application area is natural language understanding (see e.g. Vieu (1991) or
Aurnague (1991)). Other work can be found in, for example Pribbenow and Schlieder (1992)
or Narayannan (1992).

In previous work (Randell and Cohn 1989, Randell and Cohn 1992, Randell, Cui and Cohn
1992) we have started to develop sets of jointly exhaustive and pairwise disjoint (henceforth:
JEPD) sets of binary relations for pairs of spatial regions. This work has been based in sorted
first order logic and is based on a perhaps surprisingly sparse set of primitives; from a single
primitive binary relation C(x,y)!, ‘x is connected to y’, which is axiomatised to be reflexive
and symmetric, a set of eight JEPD relations can be defined.? This work is based on that of
Clarke (1981, 1985).

By adding a further function, conv(x), the convex hull of a region, and suitably axiomatising
it, many more relations can be defined, for example one region may be inside, or partly inside,
or outside another region’s convex hull whilst not overlapping at all with the other region.
We had started to develop a set of such relations, e.g. (Randell, Cui and Cohn 1992) defines
22 JEPD relations; the purpose of this paper is to explore the possible options in much more
detail yielding a much larger set of JEPD relations. Of course for some purposes, a small,
coarse grained set of relations may be sufficiently descriptive but given the complexities in
the 3D spatial world, with the many ways in which various shaped regions can interact with
each other, it is easy to see that many subtleties will be missed by a taxonomy of just 8 or
22 relations. Ultimately of course, no finite taxonomy will be adequate, but an extended set
of relations (or a calculus of relations in which new finer grained taxonomies, with known
properties, can be easily built), would be useful in many situations. For example, although

1A word on notation: predicates will always start with a capital letter, functions and constants with a lower
case letter; this should help easy any confusion when we later define predicates and functions with the same
name.

2Previously we had nine relations, splitting the equality relation into two depending on whether the regions
were topologically closed or not, but we now prefer not to make the distinction between topologically closed,
open or semi-open regions — see (Randell, Cui and Cohn 1992) for further details and discussion. It is also worth
pointing out that Egenhofer and Franzosa (1991) have developed an isomorphic set of eight spatial predicates
but from a different mathematical foundation.



the 22 relation taxonomy can describe one region being inside the convex hull of another, it
cannot distinguish between, say, the food inside a pressure cooker with the lid off and with
the lid on (which may be very important for all kinds of reason, e.g. in the latter case the cat
may not be able to steal it, or because the food may not boil over [become partly inside] —
the impossibility of this kind of transition can be detected by one of our reasoning processes
described later).

There are many ways in which finer grained qualitative distinctions could be made. In this
paper we will simply confine ourselves to refining the simple notions of inside, partially inside
and outside to be found in (Randell, Cui and Cohn 1992), though we briefly consider other
possible dimensions of refinement at the end of the paper.

The structure of the rest of the paper is as follows: first we briefly review our previous work
in the area and then we develop a rich taxonomy of qualitative spatial relations using only the
existing two primitives. Then we present a extended set of envisioning axioms and discuss the
consequences of the extended ontology on the provision of a composition/transitivity table.
We conclude with a discussion about how fine grained a taxonomy should be.

2 Previous Work

Here we briefly review material to be found in (Randell, Cui and Cohn 1992) but omitting
formal definitions and contenting ourselves with simply describing the relations defined there.
The basic ontological entity we consider is a region; note that boundaries and points are not
regions.> Also note that we only consider regions which do not have missing interior points
or lines or exterior ‘spokes’, i.e. assuming a point set theoretic interpretation of regions, the
interior of any region must equal the interior of the closure, and the closure of any region must
be identical to the closure of the interior. Regions in the theory support either a spatial or tem-
poral interpretation, though we will only consider the spatial interpretation here. Informally,
these regions may be thought to be potentially infinite in number, and any degree of connection
between them is allowed in the intended model, from external contact to identity in terms of
mutually shared parts. The formalism supports two or three dimensional interpretations (or
higher dimensions!).

The basic part of the formalism* assumes one primitive dyadic relation: C(z,y) read as ‘x
connects with y’. The relation C(z,y) is axiomatised to be reflexive and symmetric. We can
give a topological model to interpret the theory, namely that C(z, y) holds when the topological
closures of regions z and y share a common point.>

Using C(z, y), a basic set of dyadic relations are defined: ‘DC(z,y)’ (‘z is disconnected from
y’), ‘P(z,y)’ (‘o is a part of y’), ‘PP(z, y) (‘z is a proper part of y’), ‘z = y’ (‘x is identical with
v'), ‘O(z,y)’ (‘z overlaps y’), ‘DR(z, y)’ (‘z is discrete from y’) ‘PO(z, y)’ (‘= partially overlaps
y’), ‘EC(z,y)’ (‘z is externally connected with y)’, ‘TPP(z,y)’ (‘z is a tangential proper part
of y’) and ‘NTPP(z,y)’ (‘= is a nontangential proper part of y’). The relations: P,PP,TPP

*However we believe that from a modelling point of view, such mathematical abstractions are not necessary
and one can use special kinds of regions such as skins and atoms — see (Randell, Cui and Cohn 1992).

4We use a sorted logic; for the most part this need not concern us here; important sortal restrictions will be
mentioned as appropriate.

®In Clarke’s theory and in our original theory (Randell and Cohn 1989, Randell and Cohn 1992) when two
regions ¢ and y connect, they are said to share a point in common; thus the interpretation of the connects
relation here and in (Randell, Cui and Cohn 1992) is weaker.
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Figure 1: A pictorial representation of the base relations and their direct topological transitions.

and NTPP being non-symmetrical support inverses. For the inverses we use the notation ®1,
where ® € {P,PP,TPP and NTPP}. Definitions for any of the inverse predicates are all of the
form ®~1(z,y) =4e; ®(y, z) Of the defined relations, DC,EC,PO,=,TPP,NTPP and the inverses
for TPP and NTPP are provably JEPD.

A pictorial representation of the base relations defined above is given in figure 1. This
figure also depicts the direct (i.e. ‘continuous’) possible transitions between the base relations
(cf Freksa’s (1992) conceptual neighbourhoods). These transitions are alternatively expressed
as ‘envisioning axioms’ (Randell 1991)¢ and are used as the basis of the qualitative simulation
program in (Cui et al. 1992).

It is natural to want to compose regions or otherwise define new regions given existing ones:
e.g. one might want to name the region which is the sum of the regions occupied by a cup
and saucer (sum(cup,saucer)); or to pick out the region occupied by the non mouldy part of an
apple, i.e. compute a difference (diff(apple,mouldy-part)); or to pick out the intersection of two
regions defined by two rotating arms (prod(arml,arm2)); finally we might want to name the
complement of a region (compl(a)). Thus we define a set of Boolean functions. The functions:
‘compl(z)’, ‘prod(z,y)’ and ‘diff(z,y)” are partial but are made total in the sorted logic by
simply specifying sort restrictions and by introducing a new sort called NULL and an axiom
relating it to the rest of the calculus. The sorts NULL and REGION are disjoint.

Given the ability to construct the sum of two arbitrary regions it is easy to see that regions
can be divided into two kinds depending on whether there are topologically connected (i.e. in
one piece) or disconnected (in more than one piece). Such scattered regions may be used to
model, for example, a cup broken into several pieces. We therefore define a monadic predicate
CON to distinguish the former kind of region.

An additional axiom is also required which stipulates that every region has a nontangential
proper part.” This axiom mirrors a formal property of Clarke’s theory, where he stipulates
that every region has a nontangential part, and thus an interior (remembering that in Clarke’s
theory a topological interpretation is assumed).

A primitive function ‘conv(z)’ (‘the convex-hull of z’) is defined and axiomatised. We also

can define a predicate CONV(x) which is true for convex regions.
We use conv to define three relations: INSIDE(z,y)’ (« is inside y’), ‘P-INSIDE(z,y)’ (‘z is

®Each link in the diagram corresponds to an axiom which expresses that if R1(x,y) is true then either R1(x,y)
will continue to be true for ever, or x or y will disappear (become NULL) or R2(x,y) will be the next relationship
to be true of x and y in the future.

TA consequence of this axiom is that there can be no atomic regions, i.e. regions which contain no subparts.
For a discussion of how such regions can be introduced into the language, see (Randell, Cui and Cohn 1992).



partially inside y’) and ‘OUTSIDE(z,y)’ (‘z is outside y’), each of which also has an inverse.
Two functions® capturing the concept of the inside and the outside of a particular region are
also definable:inside (x) and outside(x). This particular set of relations refines DR(z,y) in the
basic theory. In (Randell, Cui and Cohn 1992, Randell, Cohn and Cui 1992a) we generated a
JEPD set of relations by taking the relations given above, their inverses, and the set of relations
that result from non-empty intersections. The set of base relations for this particular set were
then finally generated by defining an EC and DC variant for each of these relations. A new set
of base relations (using the relations defined immediately above) are constructed according to
the following schema:

a By (z,y) Zdep oz, y) A Bz, y) Ay(z,y)

where: « € {INSIDE, P-INSIDE, OUTSIDE}, 3 € {INSIDE~!, P-INSIDE~!, OUTSIDE~!}, and
v € {EC, DC} excepting where o = INSIDE, 3 =INSIDE~! and v =DC. This gives a total
of 23 base relations instead of the original 8.° As an example of the use of the relations, the
sequence in figure 2 can be described thus:

(i): OUTSIDE_OUTSIDE~! DC(z,y),

(ii): P-INSIDE_OUTSIDE~! DC(z,y),

(iii): INSIDE_.OUTSIDE~! DC(z, y),

(iv): INSIDE_OUTSIDE~! EC(z,y),

(v): PO(z,y). 10

3 Refining the Taxonomy

The first way in which we can refine the set of relations is to consider PO as well as DC and
EC at the same time as INSIDE: intuitively x could be ‘inside’ y and partly overlapping y as
depicted in figure 2(v). To capture this we need to modify the definition of INSIDE and P-
INSIDE as specified below. For later notational convenience, we will also modify the definition
of OUTSIDE in a similar manner.

INSIDE (z,y) =4c; —P(z,y) A P(z, conv(y))
P-INSIDE(z, y) =4cf =P (2, y) A PO(z, conv(y)) A Jw[P(w, conv(y)) A =P(w,y) A PO(w, z)]
OUTSIDE(z, y) =gey —P(z,y) A =Fw[P(w, conv(y)) A =P (w, y) A PO(w, z)]

This is useful particularly in the context of qualitative spatial simulation (Cui et al. 1992)
where the new base relations now allow Figure 2(v) to be described more accurately:
INSIDE_OUTSIDE~!_PO(x,y).

With this modification there are now 31 base relations (the original 8, less DC, EC and
PO, plus the EC, DC and PO versions of the allowable combinations of INSIDE, OUTSIDE,
P-INSIDE and their inverses).

8Note that it does not really make much sense to define a functional analogue of P-INSIDE as this would
simply be the sum of the inside and the outside, i.e. the complement of x!

°This figure of 23 JEPD relations is one more than in our previous publications (and an earlier version of
this paper): the extra relation is INSIDE_INSIDE™!_EC which we had thought was not physically realisable.
However, either of the configurations in figure 4 models this relation.

10 Alternatively, of course, the sequence could be described as: (i): OUTSIDE_OUTSIDE™!_.DC(y, z), (ii):
OUTSIDE_P-INSIDE™! _DC(y, z), (iii): OUTSIDE_INSIDE™! _DC(y, ), (iv): OUTSIDE_INSIDE™! _EC(y, x), (v):
PO(y, z).
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(i) (i) (iii) (iv) (V)
Figure 2: The natural sequence of x moving from being outside y, to partly inside, to inside,

to inside but touching and finally to partially overlapping... Note that the dashed line denotes
the extent of the convex hull of y.

(if) (iii)
Figure 3: The Geometrical (i) and Topological inside (ii). s (iii), where the ‘arms’ of y touch
at a point a special case of (i) or (ii)?

Now we turn to considering ways in which the INSIDE relation could be specialised. The
first specialisation is to differentiate between the topological and the geometrical insides: the
former has the property that to pass from the topological inside of a region to the outside
involves cutting through the region itself. In two dimensions the prototypical situations are
illustrated in figure 3. Figure 3(i) illustrates the topological inside, figure 3(ii), the geometrical
inside. Figure 3(iii) is a limiting case where the two ‘arms’ of the enclosing region meet at a
point. It is a somewhat moot point as to whether one prefers to view (iii) as a specialisation of
geometrical inside (as we did in (Randell, Cui and Cohn 1992)) or whether it makes more sense
both conceptually and in practice to define it as a specialisation of topological inside since one
still has to cut through the enclosing object to reach the outside (although one does not have
to cut through any sub region of it, since the boundary is not part of an object as a boundary
is not a region). We choose this alternative here and this is reflected in the definitions below.!!
It is also worth pointing out that although, intuitively, the geometric inside of an object such
as a cup would seem to define the region available for filling with liquid, the geometric inside
is actually more general than this: e.g. the region ‘in’ the handle is also part of the geometric
inside of the cup. We will return to this ‘problem’ again shortly.

TOP-INSIDE(z, y) =4.s INSIDE(z, y)A
[Vz[[CON(z) A C(z,z) A C(z, outside(y)] = O(z, y)]]V
[CON(sum(inside(y), outside(y)))A ~CON’(sum(inside(y), outside(y)))]
GEO-INSIDE(z, y) =4cs INSIDE(z, y)A =TOP-INSIDE(z, y)

" The definition of CON’ corrects the definition to be found in (Randell, Cui and Cohn 1992). Also note, for
each INSIDE relation, we are defining a function which yields the sum fusion of all the regions in the particular
inside relation. Each such definition is of the same form as the two functions defined below for geo-inside
and top-inside. To save space, we will henceforth assume that such functions are automatically but implicitly,
defined for each new refinement of INSIDE. Also note that a(Z) =45 ty[®[a(y)] means VZ[®(a(7)]]; thus, e.g.,
the definition for top-inside(z,y) is translated out (in the object language) as: Vzyz[C(z,top-inside(z,y))
Juw[P(w,z) A P(w,y) A C(z, w)]].
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Figure 4: Two configurations depicting regions which are mutually inside each other.

Figure 5: The containable inside of a region may not be completely fillable at any one time.

CON’(z) =4ey CON(2)A Yyz[sum(y, z) = = —

Jvw[P(v,y) A P(w, z) A P(conv(sum(v, w)), z)]]
top-inside(z) =g4.f tyVzC(y, z) > Jw[TOP-INSIDE(w, z) A C(z, w)]
geo-inside(z) =47 ty¥2C(y, z) <> Jw[GEO-INSIDE (w, z) A C(z, w)]

Note that TOP-INSIDE is only defined for y # us for sortal reasons which is also intu-
itively correct as the universal region is convex and so has no inside. The case illustrated
by figure 3(iii) is subsumed under the definition of TOP-INSIDE, but since we believe it is
probably not pragmatically useful to distinguish the two cases we have not refined the def-
inition into two relations here. In order to give the revised schema for generating JEPD
base relations specialising EC, DC and PO we have to ascertain which combinations of the
relations are possible. There is not space to treat this theoretically here but the main dif-
ficulty is in deciding which combinations of the inside and inside inverse relations exist. In
no case is a DC variant possible and it turns out that all the EC variants are possible except
TOP-INSIDE_TOP-INSIDE~!; figure 4 depicts models for the relations that are possible. Note
that TOP-INSIDE_GEO-INSIDE~! and GEO-INSIDE_TOP-INSIDE~! are only possible given the
revised definition of TOP-INSIDE above; if figure 3(iii) was defined to be a specialisation of
GEO-INSIDE then only GEO-INSIDE_GEO-INSIDE~! would be possible. The schema, is thus:

afy(z,y) Zaer a(z,y) A Bz, y) Ay(z,y)

where: a € {TOP-INSIDE, GEO-INSIDE, P-INSIDE, OUTSIDE}, 3 € {TOP-INSIDE~!  GEO-
INSIDE—!, P-INSIDE-!, OUTSIDE~'}, and v € {EC, DC, PO} excepting where a € {TOP-
INSIDE, GEO-INSIDE}, 3 € {TOP-INSIDE~! ,GEO-INSIDE~!} and v = DC or where o =
TOP-INSIDE, 3 = TOP-INSIDE~! and v € {PO, EC}. This now gives a total of 8-3+(4*4*3)-
(2*2*1) - 2 = 47 base relations.



3.1 Refining TPP

A natural corollary of refining EC is to refine TPP: if there are many ways that two discrete
regions can touch, depending on whether one is inside or outside the other, then there are many
ways in which a tangential proper part of a region (which by definition touches the complement
of the superior region) can touch the complement, depending on whether it is touching the
outside, or the various kinds of inside. Thus we can distinguish TPP_GEO, TPP_TOP and
TPP_OUT since the complement of a region now divides up into three JEPD regions: the
geometric and topological inside and the outside. The definitions of these specialisations of
TPP are quite natural.

TPP_GEO(z,y) =45 TPP(z,y) A EC(z, geo-inside(y))]
TPP_TOP(z,y) =4ey TPP(z,y) A EC(z, top-inside(y))]
TPP_OUT (z,y) =4ey TPP(z,y) A EC(z, outside(y))]

However, these relations are not pairwise disjoint since a tangential proper part of a region
could simultaneously touch (i.e. EC) all the different parts of the complement. Thus the set
of pairwise disjoint base relations which jointly exhaust the original TPP definition are given
by the following schema.!?

TPP_aGEO yTOP_SOUT (2, y) =4es
aTPP_GEO(z,y) A 6TPP_TOP(z,y) AyTPP_OUT(z,y)
where «, 8,7 € {—=, A} and A represents the empty string.

Thus TPP is refined into 8 new base relations and similarly for TPP~! giving 14 extra base
relations (8+8-2).

4 Envisioning Axioms

We now turn to consider the extension required to the envisioning axioms previously sum-
marised by figure 1. As before we will represent these axioms diagrammatically. It is easiest
to specify the possible transitions using relatively high level predicates rather than in terms
of the base predicates. First we will consider the transitions whose name includes OUTSIDE,
P-INSIDE, G-INSIDE, TOP-INSIDE, or GEO-INSIDE. The transition network for these predi-
cates is displayed in figure 6. Intuitively, one might have thought that TOP-INSIDE would be
isolated from the rest of the network since a region topologically inside another would have to
partially overlap the containing region in order to move to the outside or geometric inside, but
it is clear that if the containing region alters its topology from a torus to a simply connected
region (as depicted in figure 7, then a direct transition from to TOP-INSIDE GEO-INSIDE is
indeed possible. Of course, it would be important in many applications to have restricted
continuity networks which built in assumptions concerning the rigidity, shape or topology of
the regions involved, but we will not do this here.

12We have taken a liberty with the usual syntax of predicate calculus here and for notational convenience
allow a negation symbol to be part of a predicate name (e.g. TPP_~GEO_~TOP_OUT is a predicate symbol
generated by the above definition. Since — is never the initial symbol of such a name, no confusion will arise).
Of course negation symbols appearing in the right hand side of the definition as instantiations of «,§ or v are
however real logical negations.
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Figure 6: The transition network for the 4 high level inside/outside relations.

TOP-INSIDE(x,y) GEO-INSIDE(x,y)

Figure 7: The transition from TOP-INSIDE to GEO-INSIDE is possible since regions might
change their topology.

In order to determine the possible transitions for a predicate with a multipart name (such
as OUTSIDE_GEO-INSIDE~!_EC) one simply determines the allowable transitions for each part
of the name; thus in the above example, OUTSIDE can only transition to P-INSIDE, GEO-
INSIDE~! to P-INSIDE~! or to TOP-INSIDE~! and EC to PO or DC. In the case that a
sub-name transitions from PO to TPP, TPP~! or =, then of course the rest of the sub-names
are dropped, e.g. OUTSIDE_GEO-INSIDE~!_PO can transition to = or to any TPP or TPP~!
relation.

We also have to consider the transition network for the TPP specialisations. It turns out
that this subnetwork is an 8 clique, ie every transition is possible. The only restriction on
transitions to/from this subnetwork is that only a specialisation of TPP_a can transition to

a-INSIDE_PO, where o € {GEO, TOP,OUT}.

5 Further Work

There are clearly many ways in which the work presented here could be extended; one obvious
way is to further refine the taxonomy by introducing more distinctions; we will discuss this
further in the next subsection. Also of importance is to derive composition tables for the
extended set of relations; this is discussed further in (Randell, Cohn and Cui 1992a) and is the
subject of active research at present.

Another aspect that deserves greater investigation is to look at special cases of the transition
network; for example one might know that some or all of the regions involved are one piece,
or only have one concavity, or by introducing a new primitive to allow a notion of relative size
to be expressed (a qualitative concept exploited very frequently in the qualitative reasoning
community) one can easily see that certain transitions could be outlawed (e.g. if x is bigger than
y, then the transition from PO(x,y) to TPP(x,y) is not possible). Other kinds of knowledge
that could be exploited in this way include the empirical notion of rigidity (so that one would
know that a region will not deform to change its shape or size). For example, Galton (1993) has
developed specialisations of our continuity network for the eight JEPD relations by assuming



that regions do not change their shape or size in any “significant” manner. This allows him
to classify the possible set of interactions between two regions into six different categories and
produce a specialised continuity network for each of these cases.

Technical work that is currently in progress includes integrating the ideas expressed here
into our qualitative simulation program (Cui et al. 1992), finish building the extended compo-
sition tables and formally verifying the pairwise disjointness and mutual exhaustiveness of the
new taxonomies.

We should also address the question of the correctness of our definitions and axioms se-
riously. In general it is extremely difficult to be sure that a formalisation correctly captures
one’s intuitions about a particular set of concepts. One can try to ensure that the formalisa-
tion is at least consistent by finding a a model. The best that can probably be done to check
whether a formalisation is conceptually adequate is to isolate and prove a set of theorems
which capture an important set of properties which are true in the intended interpretation of
the formalisation. Clarke (1981, 1985) proves a large set of theorems for his calculus which
show its properties quite well. For the revised formulation with just eight JEPD relations we
proved some important theorems in (Randell, Cui and Cohn 1992). However an important
task for the future is to validate the new definitions in this paper using this technique.

We are also working on a modal spatial logic (Cohn 1993) and a translation from our
first order formulation to intuitionistic propositional logic (Bennett 1993) which seems to have
certain computational advantages.

5.1 Further Refinements of Inside

As mentioned above, the notion of geometric inside does not adequately characterise the notion
of containerhood. We had thought that the notion of the containable inside of a region (intu-
itively the part of the geometric inside which could contain liquid, if appropriately oriented),
was not definable with the primitives available but we now believe we have a definition. First
we define the notion of a ‘lid” which is a region which converts (part of) a geometric inside to a
topological inside (i.e. the geometric inside is the topological inside of the sum of the container
and the lid) and then use this to define when one region is part of the containable inside of
another. The ‘containable inside’ of a region is the sum fusion of all such regions.!® The three
arguments to ‘LID(w, z,y)’ are the lid w, the container y and the contained region z (i.e. the
part of the geometric inside which w is a lid of).

LID(w,y, z) =4y CONV(w) A P(z, geo-inside(y)) A P(z, top-inside(sum(w, y)))
CONT-INSIDE (z, y) =q4cf P(z, geo-inside(y))A Jw LID(w, y, )

Note that the restriction of a lid to be convex is crucial (a convex region will of course also
be one piece): for example this ensures that there can be no lid for a straight tube, because
one would either require two separate lids for each end, or the lid would have to be concave to
‘wrap round’ both ends; this ensures that the handle of a cup has no containable inside.

¥Note that one might not be able to completely fill con-inside(x) with a liquid; for example consider a beaker
where a v shaped wedge has been cut out of the top as depicted in figure 5. con-inside(beaker) cannot ever be
completely full of liquid; however, when tipped, as indicated in the figure, different parts of the con-inside will
contain liquid.



Figure 8: The pipe and containable insides of two U-tubes. The dashed lines indicate the
extent of the containable space specified by the definition above. The dotted lines give the
extent of the pipe-inside.

This definition effectively refines the notion of the geometric inside into the containable
inside and the rest of the geometrical inside, which we will call the pipe-inside.'* Although the
geometric inside splits into two disjoint parts, we need three base relations to cover the possible
configurations since a region might be geometrically inside another but neither wholly inside
the containable inside or the pipe inside (i.e. it might be partly inside each of the regions);
thus we define G-INSIDE(x,y) to cover this third case.

PIPE-INSIDE(z, y) =4ey GEO-INSIDE(z,y) A =PO(z, con-inside(y))
G-INSIDE(z, y) =45 GEO-INSIDE(z, y) A PO(z, con-inside(y))

It is worth pointing out that bent pipes (e.g. U-tubes) can act as containers and our definition
will indeed give such regions a containable inside; figure 8 illustrates two configurations (which
are cross sections through 3D regions).!®

The primary aim of the ontology presented here has been to develop a theory of relations
between spatial regions with concavities; this work has strong connections with the conceptuali-
sation of objects with holes developed by Casati and Varzi (1993). They develop a classification
of holes; there are three main types: one of these corresponds to the notion of topological inside
developed here. The other two specialise geometric inside in a slightly different way to the
present ontology: they distinguish between tunnels (perforations) and indentations. It would
be easy using the apparatus developed in this paper to make these distinctions in our theory.
However a full integration of the two theories would certainly be of interest.

So far we have not differentiated between one piece and multipiece regions: all our binary
relations are equally applicable to both. However, one might want to distinguish!® the situation
depicted in figure 9 where the region x is inside the convex hull of the multi piece region y but
is not inside any one piece proper part of y. The predicate SCAT-INSIDE(x,y) defined below
captures this concept. This refines the notion of PIPE-INSIDE so we also redefine PIPE-INSIDE
to take account of this. The auxiliary predicate MAX-P(x,y) is true when x is a maximal
connected (ie one-piece) sub region of y.

' This might not always be a very intuitive name for this kind of geometric inside: for example consider (in
three dimensional space) a region consisting of 6 perpendicular spokes radiating out from a centre (as in the
axes of an x, y, z graph): such a region has a geometric inside but no containable inside, and one would not call
the object a pipe! This opens up the possibility of further refining the notion of geometric inside so that the
pipe-inside was split into the cases which one would want to consider to be the inside of a pipe and the cases
such as the spoked region above. We will not pursue this possibility further in this paper. Also note in passing
that in two dimensions every region has a null pipe-inside.

150f course a U tube is a pipe, but since it is bent it has a containable inside; it also has a pipe-inside which
is the region ‘outside’ the tube, but inside the convex hull of the tube.

16This situation was suggested to us by Simone Pribbenow.
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Figure 9: x is inside y, but without being inside any one-piece subpart of y.
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Figure 10: Examples of NTS.

SCAT-INSIDE(z, y) =4es INSIDE(z, y)A

VwMAX-P(w, ) — —32[MAX-P(z, y) A INSIDE(w, z)]
MAX-P(z,y) =4y CON(z) A P(z,y) A =32[PP(z,2) A P(2,y) A CON(z)]
PIPE-INSIDE(z, y) =4y GEO-INSIDE(z, y) A =PO(z, con-inside(y))A ~SCAT-INSIDE(z, y)

The geometric inside is now split into four JEPD cases: CONT-INSIDE, PIPE-INSIDE, G-INSIDE
and SCAT-INSIDE. This adds a further 3 base relations to the previous total.

A refinement of TOP-INSIDE is also possible. In (Randell and Cohn 1989) we defined a
predicate NTS(x,y) which was true when x was non tangentially surrounded by y. This is
effectively a special case of TOP-INSIDE(x,y), for example when x is the topological inside of
y. The original definition now has to be changed slightly to allow for the elimination of the
distinction between open and closed intervals.

NTS(z,y) =4ef 3z2NTPP(z, 2) A y = prod(z, compl(z))

The region z will be the sum of x and y in the case that the predicate is true. This
effectively specialises the notion of topological inside to the case where one region completely
fills a maximally connected part of the topological inside of another region; i.e. a region y
may have a multipiece topological inside (e.g. in the case of a car where the boot!” and
passenger compartments form two separated parts of the topological inside, assuming all the
doors and vents are shut); if the boot was completely filled with luggage, then the car would
non tangentially surround the luggage. Examples of NTS appear in figure 10.

It might also be useful to define similar notions for the other kinds of inside, in particular
for containable inside, since one might want to know whether a particular container is full.
A complication is that the containable inside might be multi piece (i.e. there are several
concavities which could act as containers). One way to proceed is to define the notion of a
maximal container with respect to a region and then define a predicate FILLS(x,y) (i.e. every
maximal one piece subpart of x completely fills a maximal one piece part of the containable
inside of y).

MAX-CONT-INSIDE (z, y) =45 MAX-P(z, con-inside(u))
FILLS(z, y) =4y V2MAX-P(z,2) - MAX-CONT-INSIDE(z, y)

70r trunk in American English.
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6 Discussion

In the preceding sections we have seen how a perhaps surprisingly complex and expressive
ontology for describing qualitative spatial relationships can be logically defined from just 2
primitives. Including the refinements offered by CONT-INSIDE, SCAT-INSIDE or NTS, there
are well over 100 base relations, all of which are JEPD. It is clear that it would not be difficult to
continue defining new predicates expressing finer distinctions. For example one could introduce
the notion of ‘touching at two separate places’, or one could define notions of JUST-INSIDE
(where x ECs the outside of y) or JUST-OUTSIDE (where x ECs the inside of y) (see Randell
and Cohn (1992)).

In the face of a seemingly limitless scale of ever decreasing granularity, how can we decide
what is a ‘useful’ set of primitives, i.e. when should we stop the enterprise? This is a difficult
question; indeed Joskowicz (1992) has argued that there is no general purpose commonsense
spatial reasoner and thus questions such as this one just cannot be answered in general — it will
depend on the domain and the task in hand and perhaps many other considerations. What
we shall attempt to do here is to start to propose some criteria by which one might make such
decisions.

First, if we are really concerned purely with qualitative reasoning, then one may not wish
to consider refinements such as the one suggested above of ‘touching at two separate places’
which has a ‘metric’ component (i.e. involves counting rather than existence/non existence
predication). Another, perhaps more interesting criterion, is to examine the effect of a proposed
distinction on the transition network: if the proposed refinement cannot be exploited by the
transition network, i.e. if the new nodes form a clique (or perhaps a ‘near clique’) such as
happened with our proposed introduction of the specialisations of TPP, then we may not
consider it worth while making such a distinction.'® Of course this argument depends on
the purpose to which we intend to put our spatial description, but if it involves dynamic
reasoning (i.e. reasoning about evolving spatial configurations over time), then this seems like
a reasonable criterion. This criterion would also seem to rule out refining P-INSIDE in the
same way we refined GEO-INSIDE (when we introduced the containable and pipe insides) as
the transition network would again be a clique for the subnetwork for P-INSIDE.

A further criterion that seems reasonable to consider is that any proposed refinement of an
existing predicate should have at least one property which is not true of the ‘parent’ predicate.
Eg if Q is refined into R and S, then there should be some property T such that Vz R(z)
— T(z) or Yz S(z) — T(z) but not Vo Q(z) — T(z). Actually this criterion overlaps with
the previous one since, under this consideration, we would accept the refinement of INSIDE to
TOP-INSIDE and GEO-INSIDE, since TOP-INSIDE cannot transition to P-INSIDE (but INSIDE
can). The distinguishing property could either be a ‘topological property’ (such as we have
just mentioned) or some domain specific property (e.g. a liquid will stay in an appropriately
oriented cont-inside (but not in an arbitrary geo-inside).)

Sometimes there would seem to be only pragmatic or domain dependent reasons for deciding
whether to make a refinement (e.g. our decision to exclude the refinement suggested by figure
3(iii)). Equally the decision whether to make distinctions such as the CONT-INSIDE or to refine
the notion of PIPE-INSIDE so as to capture the real notion of a pipe better, will ultimately
depend on whether our domain has containers and pipes in it.

8There is still a small advantage to be gained since, as we have already noted, not every TPP specialisation
can transition to every PO specialisation.
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Another obvious criterion is a computational one: one might take account of the decid-
ability or tractability of reasoning within the chosen taxonomy. This is, of course, a standard
consideration in the many so called ‘description languages’ (or taxonomic languages) that have
been designed in recent years such as KL-ONE and its derivatives. Depending on what com-
putation we want to perform, we can consider what the computational cost is. At present, we
have expressed all the definitions in (sorted) FOL, so this question is not entirely trivial to
answer. An interesting idea to pursue would be to discover what fragment of the conceptual
hierarchy we have presented here can be expressed in a language with known decidability or
tractability properties.

In the temporal domain, Ladkin (1986) notes that once multi-piece temporal intervals are
considered, then the number of possible relations is infinite. He provides a finite taxonomy of
relations for such a temporal calculus by insisting that no relation depend on the number of
maximally connected subintervals: new relations can only be defined by quantifying over all
the maximally connected subintervals (using a predefined set of quantifiers!®) or by considering
the initial and final maximally connected subintervals. One could imagine generalising?® this
idea to the spatial case, though there is no corresponding notion of initial and final subregions
(unless one introduces primitive orderings based on the three orthogonal axes).

It is worth pointing out that in some applications there may be no single level of granularity
which is appropriate: rather, a hierarchical approach with reasoning taking place at many
different levels according to the particular situation may be best. We are conducting research
on this topic.

One last comment is that some of these criteria may be equally applicable to domains other
than the spatial case, ie these may be useful criteria for deciding how fine grained a taxonomy
to create in almost any domain.
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