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1 Introduction

Although the notions of part and whole seem to be complementary, as is especially sug-
gested by the notion of part-whole relations, on closer inspection it becomes obvious that
this does not quite hold. One simple, but nevertheless important point is that part is a
(binary) relational concept while whole is a (unary) predicative one. Something is a part
if and only if it is a part of something; being a whole does not mean being a whole of some
thing(s)|having parts is not suÆcient for being a whole.

To be a whole typically requires having parts with certain properties and organized in
such a way that the whole acquires the feature of integrity. Integrity, however, although
much discussed in the philosophical tradition since at least Aristotle (cf. Burkhardt and
Dufour 1991), is a notion that is not very well understood. It seems to depend on kind,
respect, and relevance. Some things may have integrity in one respect but not in another.

Several criteria may contribute to the integrity of things|among others: size, connect-
edness, form and function. Certain parts of some kinds of wholes have to be themselves
wholes of a certain kind. Some kinds of wholes require parts which are connected to each
other or in certain positions with respect one another. Some parts of a certain whole might

be required to be similar in some way or another or to contribute to its function.

The part-of relation, in contrast, is independent of any such criteria of integrity. Being a

formal relation, and not being restricted to things of special kinds or speci�c organization, it
is neutral with respect to the choice of a speci�c domain. The part-of relation is applicable
everywhere. Its domain is the completely unrestricted domain of everything. The same is

true of its conceptual mates: proper-part-of (part of and not identical with), overlapping

(having a common part), being discrete (having no part in common), and sum (of one
or more things, understood as being composed out of the thing(s) without remainder or

addition).
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These interrelated notions are by now well understood. Their theory is known as classi-

cal mereology (CM) which has been given several axiomatizations since its �rst formulation

by Le�sniewski (1916). The system we employ, consisting of de�nitions [D1] { [D6] and ax-

ioms [A1] { [A3], corresponds to the one given by Leonard and Goodman (1940).1 Its

primitive notions are that of discreteness and identity.

[D1] x is part of y i� x is discrete from everything y is discrete from.

[D2] x is a proper part of y i� x is part of y and y is not part of x.

[D3] x and y overlap i� they have a common part.

[D4] x is the sum of some entities i� x is discrete from exactly those entities which

are discrete from each of them.

[D5] x is the product of some entities i� x is the sum of all their common parts.

[D6] x is an atom i� it has no proper part.

[A1] x is discrete from y i� x and y do not overlap.
[A2] If x is part of y and y is part of x, then x and y are identical.
[A3] For any entities, their sum exists.

According to [A1] and [D3], overlapping and part-of can also be taken as primitive
notions to describe this structure. Given that

x is part of y i� x is a proper part of y or x and y are identical,
x is part of y i� y is the sum of x and y,

x and y overlap i� the product of x and y exists,
also proper part , sum, or product could be taken as primitive concepts.

In addition to the speci�c relationships between the concepts involved, CM can be char-
acterized by its extensionality [A2] and completeness [A3]. These principles may become
invalid, however, if the quanti�ers of CM are restricted in certain ways. But in letting the

quanti�ers range over everything, as we claim that CM does, it is more plausible to assume

that they are well-founded. Both of these principles are based on the formal character of
the mereological relations which should be seen in analogy to the relation of identity. E�ec-
tively, overlap may be conceived of as partial identity, and being-completely-identical-with

may be de�ned as being part of and having as part. Furthermore, composition (sum-of )

is a generalization of the ordinary concept of identity. According to this view, there is a

unique thing which is the sum of, say, Julius Caesar and Marilyn Monroe. Being their
composition without remainder and addition, it is nothing over and above the emperor
and the actress. It is simply as one thing what they are as two separate things. Whereas

identity is restricted to links between singular terms exclusively, sum-formation provides a

link between singular and plural terms as well.

The principle of extensionality [A2] can be paraphrased by: `if x and y overlap the same

1The most important di�erence between the system of Leonard and Goodman and our formulation

consists in our use of plural quanti�cation in e.g. [D4] and [A3] (cf. Lewis 1991, Boolos 1984). We shall

make use of this device at several places in this paper. (Cf. our short remarks in paragraph 4 and 5.)
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entities (are discrete from the same entities / have the same entities as part / are part of

the same entities), then x and y are identical', `for any objects, their sum is unique', `no

di�erence without mereological di�erence', or `no di�erence without di�erence in content'.

The principle of completeness or unrestricted sum-formation [A3] speci�cally corresponds

to the view of composition as identity that is argued for by Armstrong (1978), Baxter

(1988a,b) and Lewis (1991).

CM as the general theory of formal mereological concepts does not have any speci�c

notion of integrity or being a whole. This neutrality should not be seen as a disadvantage

of the theory but as displaying its power: the concepts of CM are applicable in each and

every domain, hence its proper domain is the unrestricted universe of everything and,

accordingly, the quanti�ers of CM are kept extremely open.

This point of view is not generally accepted. Researchers in several �elds have found

it appropriate to introduce domain-speci�c, quasi-mereological concepts of being-part-of,

overlapping, being-discrete or the like. Typically, these quasi-mereological concepts are

de�nitionally connected with certain explicitly non-mereological terms. It seems that in
such approaches the question of whether something ful�lls a certain criterion of integrity
has come to be mixed up with the question of whether it exists. Although we have been

rather skeptical with respect to applying CM to certain domains ourselves (Heydrich 1988,
Eschenbach et al. 1990), we now think that taking CM for granted in looking at di�erent
domains can shed more light on the speci�c nature of these domains, their similarities and
di�erences. We claim that the di�erences are not based on di�erent mereological concepts
but on di�erent concepts of integrity or being a whole.

In the following sections, we brie
y describe axiomatic accounts of three special do-
mains. None of these restricted domains can be considered as a model of CM, but each
of the accounts makes use of speci�c quasi-mereological concepts. Quasi-mereological be-
cause these concepts show enough similarity to the family of classical concepts by the way
they are interrelated with one another. However, either the principle of extensionality, the

principle of unrestricted sum-formation or one of the classical interrelations between the

mereological concepts has to be abandoned. Nevertheless, we show that CM is applicable
to these domains as soon as they are seen as being embedded in a less restricted (or even
the most comprehensive) domain.

The �rst account concerns linear orders of extended entities as they can be found in

discussions of the ontology of time. The non-mereological domain-speci�c concept in this

case is the relation of total precedence. In restricting the account to things which bear
integrity in the sense of connectedness, one has to abandon the principle of unrestricted
sum-formation. Considering the comprehensive domain, however, allows one to keep CM

intact and to describe the structure of the domain by connecting the notion of precedence

with the general notions of CM.

The second account deals with topological structure. Our starting point is Clarke's ap-

proach of de�ning quasi-mereological notions on the basis of connection, which is Clarke's
topological primitive (Clarke 1981). The quasi-mereological structure thereby de�ned di-

verges from CM in that the role of overlap is taken over by two notions. Only one of them
satis�es the condition that x is part of y if and only if everything overlapping x overlaps y,
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and only the other one satis�es the condition that overlapping implies having a common

part. We show that it is not necessary to abandon CM in order to de�ne Clarke's topologi-

cal structures. On the contrary, one may arrive at a considerable conceptual simpli�cation

by embedding both domains in a less restricted (or even the most comprehensive) domain.

We choose region as our primitive and show how to regain Clarke's structure by connecting

this notion with the general conceptual apparatus of CM.

The third account takes up Lewis' recent treatment of set-theory (ST). In ST we �nd the

quasi-mereological notions of subclass (part), having a non-empty intersection (overlap),

union (sum), etc. Given this interpretation, the structure de�ned by the axioms of ST

does not satisfy CM for two reasons. First, having a common part does not imply overlap.

Second, the existence of arbitrary sums of sets is not guaranteed in the domain of sets.

Following Lewis (1991), we show how to disentangle speci�c set-theoretical concepts from

the general notions of CM. This leads to the singleton function as a new primitive. The

domain of sets is embedded in the comprehensive universe of everything: individuals,

classes, and their sums. In our view, the concept of integrity inherent in the notion of sets,
as reconstructed by Lewis, turns out to be a matter of size.

2 Linear orders of extended entities

Orders of extended entities as de�ned by [D10] can be important in the study of ontologies
such as space, time, and situations. Since these orders have not been much investigated,

several de�nitions of properties of relations have to be generalized to be applicable in a
reasonable way both to them and to orders of non-extended entities. For example, the
de�nition of external in [D8], which is due to Leonard and Goodman (1940), generalizes
the de�nition of irre
exivity, corresponding to the view of overlapping as partial identity.
To distinguish e.g. temporal structure from causal structure, it is necessary to establish a

notion of linearity for such orders as well as for orders of non-extended entities. Taking

[D11] as the de�nition of exhaustion, linearity of orders of non-extended entities can be
de�ned by [D12]. With respect to external orders of extended entities one has to generalize
the notion of linearity since such an order R cannot relate an R-extended entity and a

proper part of it.

[D7] A (binary) relation is a (partial) order i� it is transitive and irre
exive.

[D8] A relation is external i� no overlapping entities are related by it.
[D9] Let R be an order. An entity is R-extended i� it has parts x and y such that

xRy.
[D10] An order R is an order of extended entities i� R has some R-extended entity

in its �eld. Otherwise R is an order of non-extended entities.
[D11] A relation R exhausts the (symmetric) relation S i� xSy implies xRy or yRx.

[D12] An order of non-extended entities is linear i� it exhausts non-identity.
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Orders of extended entities are well known in the discussion of temporal ontology.

Although at the �rst glance, the structure of time seems to be quite simple (e.g. compared

with the structure of space or situations) a lot of di�erent models have been proposed for

it. The di�erences are mainly due to assumptions whether time spans and/or time points

exist, whether time spans have to be bounded, whether the 
ow of time is linear or might

be branching, or whether the di�erences of temporal entities can be described by means of

their temporal relations to other temporal entities (extensionality). The di�erence between

time spans and time points should, in our view, be drawn by using mereological notions:

while the former may have proper parts which are temporal entities, the latter do not.

In this section, we will take the domain of temporal entities as an example of a linear,

external order of extended entities, since the underlying ontological structure belongs to

the most prominent ones and seems to allow for the de�nition of mereological relations (cf.

van Benthem (1983), Allen (1984)).

The structure of the domain of temporal entities can be described on the basis of the

binary relation total temporal precedence. There are, of course, other notions of temporal
precedence which might e.g. allow for the overlap of ordered entities. But any presentation
of temporal structures should make the notion of total temporal precedence available, i.e.

should take it as primitive or allow for its de�nition. Since our main concern is that
of ontological structure, our discussion applies not only to those approaches taking total
precedence as primitive but to all approaches which allow for its de�nition.

Total precedence being an external order, we will assume [APR1] and [APR2] to hold.

[APR1] If x precedes y and y precedes z, then x precedes z.
[APR2] Every entity is discrete from any entity it precedes.

According to the view of overlapping as partial identity, it seems straightforward to
employ an axiom like `If x and y are discrete, then x precedes y or y precedes x' (i.e. prece-

dence exhausts discreteness) as a generalization of the de�nition of linearity (cf. Benthem

1983). In the context of [APR2], this allows for the de�nition of such domain-dependent
quasi-mereological notions as p-part, p-overlapping, p-discreteness and p-sum ([DPR2] {
[DPR4]) on the basis of precedence, employing well known interrelations of CM. Axiom

[APR2'] can now replace [APR2], so that the system becomes independent from CM.

[DPR1] x is p-part of y i� every entity which precedes y or is preceded by y precedes x

or is preceded by x.
[DPR2] x p-overlaps y i� x and y have a common p-part.

[DPR3] x is p-discrete from y i� x and y do not p-overlap.
[DPR4] A p-sum of some entities is p-discrete from z i� all of them are p-discrete from

z.

[APR2'] x and y are p-discrete i� x precedes y or y precedes x.
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The similarity between CM and the mereological structure de�ned by [DPR1] { [DPR4],

[APR1] and [APR2'] is not super�cial. E.g. p-part is re
exive and transitive, p-overlapping

is symmetric and re
exive, p-discreteness is symmetric and irre
exive, and being a p-part

of some entity x means not p-overlapping any entity x is p-discrete from. Furthermore,

adding a precedence-based principle of extensionality such as `If x and y precede the same

entities and are preceded by the same entities then they are identical' will result in the

structure being extensional with respect to the quasi-mereological notions, e.g. p-part be-

comes anti-symmetric and p-sum becomes unique. The only di�erence from CM is that

in the structures as de�ned here, the p-sum of two (or more) entities need not exist. In

addition, the assumption that arbitrary p-sums exist is incompatible with the assumption

that more than three entities exist.

This is a consequence of the underlying assumption that all entities have to be convex

with respect to precedence, which is built into [APR2'] (as well as the formulation of the

principle of extensionality just mentioned). Loosely speaking, an entity is convex if it has

no holes, i.e. it has everything which is (with respect to precedence) between two p-parts
of it as p-part. It is provable that the structure as de�ned above does include only such
entities.

Convexity seems to be a criterion of integrity. We do not expect every sum of convex
entities, i.e. their composition without remainder and addition, to be convex. Thus, the
di�erence between part-of and p-part seems to be that the latter is a kind of part-whole
relation. But the domain as described here does not allow for distinguishing these two kinds
of relations, since every entity is assumed to be a whole (i.e. to be convex). Consequently,

there are no non-convex sums of convex entities: Not to bear integrity means not to exist.
As a consequence, p-part cannot be conceived of as a restriction of part-of to a speci�c
domain (of wholes).

Fortunately, we can easily get rid of the domain-dependent quasi-mereological notions
if we allow non-convex entities to exist. It is not our point to propose a temporal ontology

of non-convex entities as an alternative to ontologies of points and convex time-spans. Our

question is whether it is in general necessary to deny the existence of non-convex extended
entities for the sake of assuming a domain-speci�c external order to be linear.

We start out by assuming the mereological relations to be de�ned by CM, independently

from any domain-speci�c notion. A general de�nition of R-betweenness and R-convexity

on the basis of part-of and order R are then provided by [D13], [D14], and the notion of

being R-disentangled is added by de�nition [D15]. Linearity of orders of extended entities
can now be de�ned in a manner not assuming convexity of everything [D16], which like
[D12] is a special case of [D17].

Let R be an order.

[D13] x is R-between y and z i� yRx and xRz, or zRx and xRy holds.
[D14] x is R-convex i� every entity which is R-between two parts of x is part of x.
[D15] x and y are R-disentangled i� they are discrete and neither of them has a part

which is R-between two parts of the other.

[D16] An external order of extended entities R is linear i� it exhausts R-disentangled-
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ness.

[D17] An external order R is linear i� it exhausts R-disentangledness.

In the domain of temporal entities, [D17] becomes [APR3]2, while [APR1] and [APR2]

do not need revision. With respect to precedence, the substructure of p-convex entities is

isomorphic to the structure de�ned earlier, but it allows for the existence of non-p-convex

entities and thus for the existence of arbitrary sums of temporal entities.

[APR1] If x precedes y and y precedes z, then x precedes z.

[APR2] Every entity is discrete from any entity it precedes.

[APR3] If x and y are p-disentangled, then x precedes y or y precedes x.

Although the structure allows for the existence of non-p-convex entities, it is still possi-

ble to reject the assumption that non-p-convex temporal entities exist. De�ning the notion

of temporal entity by [DPR5] and replacing [APR3] by [APR3'] yields a basis for restricting
the domain of the relation of precedence without giving up a clear notion of linearity.
Thus, taking CM as the general theory of mereological concepts and at the same time

accepting the existence of non-p-convex entities does not mean assuming the existence of
non-p-convex temporal entities. Instead, we can �nd a way of de�ning criteria of integrity
(as p-convexity) according to assumptions concerning the restrictions on entities belonging
to certain domains.

[DPR5] x is a temporal entity i� it is in the �eld of the precedence relation.
[APR3'] If x and y are p-disentangled temporal entities, then x precedes y or y precedes

x.

As stated above, it is not our purpose to propose a speci�c ontological structure as

being the `true' structure of time. On the contrary: the structure discussed here is neutral
with respect to a lot of interesting questions concerning the natural ontology of time: In

which cases is the sum of temporal entities a temporal entity? Are there temporal entities

which are atoms? Are there time-points (i.e. temporal entities which have no temporal
entities as proper parts)? Is there a beginning (end) of time (i.e. a temporal entity which

precedes (is preceded by) every other temporal entity)? Is the past (future) of a temporal
entity a temporal entity (i.e. the sum of all entities preceding (being preceded by) it)?

Instead our goal was to disentangle the relation-theoretic notion of linearity from onto-

logical assumptions in order to get rid of domain-speci�c quasi-mereological notions, and
thus to reach a level of neutrality with respect to assumptions concerning features of in-
tegrity in the temporal domain. The addition of speci�c restrictions on temporal entities

to the system obtained will yield more speci�c domains, which may be more `natural' with

respect to how we conceive of time.

2Using p-disentangledness as an abbreviation for precedence-disentangledness etc.
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3 Quasi-Topology

While time is usually assumed to be one-dimensional, an assumption that is re
ected by

assuming temporal precedence to be a linear order, the structure of space is more complex.

Topology, usually formulated on the basis of set theory, re
ects some important aspects

of this structure and is neutral with respect to the number of dimensions. Clarke (1981)

presented an axiomatic system which is quite close to topology. His system is based on the

primitive binary relation of connection, which is used for the de�nition of quasi-mereological

notions. In Clarke (1985), he modi�ed the system slightly and extended it by presenting

a de�nition of point on the basis of set-theoretic constructions and by adding an axiom to

secure the existence of points with certain properties. To distinguish between quantifying

over regions (in his terms: individuals), points and sets of points, Clarke uses di�erent

kinds of variables according to the di�erence in type. Since points are not considered to

be individuals, they are not embedded into the mereological structure but are related to

regions by a non-mereological relation in.
In this section we will concentrate on the topological structure de�ned by Clarke in

1981, although it would be interesting to discuss how his notion of point can be regained
on the same level as that of region, such that points are parts of the regions they are in. But
in studying his approach we found the unfortunate result that|contrary to what Clarke
intents|the calculus he de�ned in 1985 reduces to the classical calculus of mereology.3

Topology gives rise to several concepts of integrity (self-connectedness, lack of holes,

etc.). They are de�nable in terms of more basic concepts, which we will concentrate on in
the following discussion. Our main point is how the system developed by Clarke (1981) on
the basis of topological notions can be embedded into a classical mereological framework.

The presentation of the structure in Clarke (1981) is divided into three subsections,
called `Mereological part', `Quasi-Boolean part', and `Quasi-Topological part', respectively.

The `Quasi' in the latter names is motivated by the non-existence of an empty individual
(corresponding to the empty set in set-based approaches), which leads to the partiality of
functions such as product or complement. However, the di�erence between CM and Clarke's
connection-based mereological system is more striking than the di�erence between classical

topology and his quasi-topology. To give the reader an idea of this, we will present some

of Clarke's de�nitions (with a slightly changed terminology).

[DQT1] x is an r-part of y i� y is connected to every region x is connected to.
[DQT2] x is a proper r-part of y i� x is an r-part of y and y is not an r-part of x.

[DQT3] x r-overlaps y i� x and y have a common r-part.
[DQT4] x is the r-sum of some regions i� x is connected to exactly those regions which

are connected to at least one of them.
[DQT5] The r-product of some regions is the r-sum of the common r-parts of them.

[DQT6] x is r-discrete from y i� x and y do not r-overlap.

3This observation will be the topic of a future paper. The proof is too complex to present here, especially

since this paper is not devoted to speci�cally topological questions.
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[DQT7] x and y are externally connected i� they are connected and r-discrete.

[DQT8] x is a tangential part of y i� x is an r-part of y and externally connected to a

region which is externally connected to y.

[DQT9] x is a non-tangential part of y i� x is an r-part of y and not externally connected

to any region which is externally connected to y.

[DQT10] The interior of x is the r-sum of the non-tangential parts of x.

[DQT11] x is open i� it is identical with its interior.

The axiomatic system given in Clarke (1981) corresponds to the system [AQT1] { [AQT6].

Our explicit restriction of the quanti�cation to regions captures Clarke's use of just one

sort of variables.

[AQT1] Every region is connected to itself.

[AQT2] If x is connected to y then y is connected to x.

[AQT3] If x and y are connected to the same regions, then they are identical.
[AQT4] For any regions their r-sum exists.
[AQT5] Any region has a non-tangential part.

[AQT6] If x and y are not externally connected to any region and r-overlap, then their
r-product is not externally connected to any region.

Comparing these de�nitions and axioms with the mereological ones, we see that con-
nection takes over the role of overlap in CM with respect to the de�nitions of r-part, r-sum

and extensionality [AQT3]. But in contrast to r-overlap, connection does not guarantee the
existence of a common r-part. With respect to the quasi-mereological relations of r-overlap
and r-discreteness, the structures de�ned are not extensional. But the identi�cation of con-
nection and r-overlap would result in the emptiness of the notion of external connectedness
and tangential part. As a consequence, every region would be open and all the topological

distinctions would vanish (i.e. be reduced to mereological ones).

As already obvious in the title (`A Calculus of Individuals Based on \Connection"'),
Clarke assumes the topological notions to be more basic than the mereological ones. As a
consequence of his de�nitions it becomes necessary to assume that points and boundaries

are not embedded in the mereological structure but are a kind of second class citizens of

his theory, or, as Simons (1987: 98) puts it: `What we are being asked to believe is that

there are two kinds of individuals, \soft" (open) ones, which touch nothing, and partly or
wholly \hard" ones, which touch something. Yet we are not allowed to believe that there
are any individuals which make up the di�erence.'

Assuming mereology to be more basic than topology, we want to show that the pos-

sibility of introducing topological notions is not only given by taking connection as the

basis. In contrast to the approach of Smith (1993), however, we will aim thereby at speci-

fying the same structure as Clarke. A topological concept which is even more basic than
connection is region. That this is true for Clarke's framework as well is obvious in his

restricting quanti�cation by using di�erent kinds of variables in the later paper. We claim
that the distinction between regions and non-regions already allows for the establishment
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of the whole framework of quasi-topology on the basis of CM. Thus, the di�erences be-

tween di�erent kinds of topological structures can be described as di�erences regarding the

underlying concept of region. Nevertheless, some restrictions must be ful�lled by any such

concept. We start out by giving new de�nitions of connection, r-overlapping (overlapping

by a region), external connectedness, and openness, assuming CM as the framework.

[DQT0] x and y are connected i� they are overlapping regions.

[DQT3'] Regions x and y r-overlap i� they have a common part which is a region.

[DQT4'] Region x is the r-sum of some regions i� x is connected to exactly those regions

which are connected to at least one of them.

[DQT5'] The r-product of some regions is the r-sum of their common parts which are

regions.

[DQT6'] Regions x and y are r-discrete i� they do not r-overlap.

[DQT7'] Regions x and y are externally connected i� they are connected and r-discrete.

[DQT8'] Region x is a tangential part of region y i� x is part of y and externally con-
nected to some region which is externally connected to y.

[DQT9'] Region x is a non-tangential part of region y i� x is part of y and not externally

connected to any region which is externally connected to y.
[DQT10'] The interior of region x is the r-sum of the non-tangential parts of x.
[DQT11'] A region x is open i� it is identical with its interior.

The topological structure of the system presented in Clarke (1981) can be regained by

means of [AQT3'] { [AQT6']:

[AQT3'] If every region that overlaps region x overlaps region y, then x is part of y.
[AQT4'] For any regions their r-sum exists.
[AQT5'] Every region has an open region as a part.

[AQT6'] The r-product of any two overlapping open regions is an open region.

While [AQT4'] and [AQT6'] seem to be essential for calling the system quasi-topological,

the other axioms could be modi�ed or abandoned in order to derive di�erent systems.
Although not every region needs to be open, open regions in the topological structure

show few signs of integrity. Arbitrary sums of open regions are open regions and open
regions overlap if and only if they have an open region as a common part. In the structure

de�ned here, the remainder principle also holds: if an open region x is not part of an open

region y, then there is an open region which is part of x and discrete from y. Thus, the
structure of open regions is a model of CM. While arbitrary sums of regions are regions,
and mereological extensionality holds according to [AQT3'] for the structure of regions,

overlapping regions need not have a region as a common part and the remainder principle

need not hold (i.e. a region which is not part of a region x need not have a region discrete
from x as part). Thus the concept of region exhibits more features of integrity than the

concept of open regions does.
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4 Set Theory

Traditionally, set theory (ST) and classical mereology (CM) are conceived of as basically

incompatible accounts. Le�sniewski developed CM as a formal alternative to axiomatic ST

in order to arrive at a paradox-free notion of classes within his general system, and Good-

man (1964) has argued that fundamentally di�erent generating relations are constitutive

for the domains of ST and CM.

In his recent book `Parts of Classes', David Lewis has challenged this assumption.

Taking seriously the view that CM is concerned with the completely unrestricted domain

of everything, he argues that sets can be conceived of as a proper sub-domain within the

all-embracing universe of things. According to him, the conceptual apparatus of CM is

applicable to sets as well: sets (like everything else without restriction) have parts and

are parts. They overlap or are discrete, and they have sums. Whereas, however, we have

the general principle that sums of things are things, the principle that sums of sets are

sets is not valid. But this does not mean that we have to give up unrestrictedness of
sum-formation as a general principle when dealing with the domain of sets. Sums of sets

exist (they are things). Sometimes they are sets themselves (thus within the domain of
speci�c interest in set theory); sometimes, however, they are proper classes (thus outside
the interesting domain). Insofar as sets cannot be arbitrarily composed (summed up) to
form further sets, there seems to be a special notion of integrity inherent in the notion of
sets.

As it turns out, integrity of sets seems to be mainly a matter of size. There is a popular
parlance in expositions of ST, according to which some classes are `too large' to be sets.
Following Lewis, one may take this metaphor quite literally. He distinguishes between
small things and large things basically on mereological grounds. Given this distinction,
sets are small and proper classes are large.

The fundamental non-mereological relation which gives rise to this kind of integrity for
things in the domain of sets is, according to Lewis, the relation between a unit class (a
singleton) and its member or|given the one-one character of this relation|the (partial)
singleton function which assigns unit classes to individuals and sets (but to nothing else).

In order to be more explicit about Lewis' account, let us consider �rst three (somewhat

idiosyncratic) de�nitions of class, set and individual taking member-of and null-set as

primitives.

[DST1] x is a class i� it has members.

[DST2] x is an individual i� it is a member without members.
[DST3] x is a set i� x is identical with the null set or x is a class that is a member of

some class.

The idiosyncrasy simply consists in taking the null set to be a set but not a class. This,

however, is merely terminological, since it does not prohibit a standard axiomatic account
of ST. (The concepts of ordered pair, non-empty intersection, subset, union and nesting

with no greatest member are understood in the usual way.)
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[AST1] The null set is a set with no members.

[AST2] No two classes have the same members; no class has the same members as the

null set.

[AST3] If each of x and y is an individual or a set, then there exists a set of x and y.

[AST4] Given a set x, and given some things, there is a set of all and only those of the

given things that are members of x.

[AST5] If there are some ordered pairs whereby each member of a class x is paired with

exactly one member of a class y, and if for each member of y there is a member

of x that is paired with it, and if x is a set, then y is a set.

[AST6] No class has a non-empty intersection with each of its members.

[AST7] Suppose x is a class, and suppose there are some ordered pairs whereby each

member of x is paired with at least one thing, and no two members of x are

paired with the same thing. Then there is a class y such that each member of

x is paired with exactly one member or y.

[AST8] If x is a set, there is a set of all subsets of x.
[AST9] If x is a set, there is a set of all members of members of x.
[AST10] There is a nesting with no greatest member, the union of which is a set.

Let us note, now, that it is possible to rede�ne all the well-known set theoretical
notions directly in terms of the singleton function and mereological notions. Here are
some prominent examples:

[DST1'] A class is a sum of singletons.
[DST0.1] x is a member of y i� y is a class and the singleton of x is part of y.
[DST2'] An individual is anything that has no singleton as part.
[DST0.2] The null set is the sum of all individuals.
[DST3'] x is a set i� it is identical to the null set or a class that has a singleton.

[DST4] x includes y i� (1) y is the null set and x is the null set or a class, or (2) y and

x are classes and y is part of x.
[DST5] x is a subclass of y i� x is a class and y includes x.
[DST6] x is an urelement i� it is an individual and not a set.

[DST7] A proper class is a class without a singleton.

Note that [DST1] and [DST1'] de�ne the same idiosyncratic notion of class. The null set

is|according to [DST0.2]|the most comprehensive member without members. It is both
an individual and a set, but not a class or urelement. Although included in every class, it

is not a subclass of any.
Lewis' main thesis is the following almost trivial claim:

[TST1] The parts of a class are all and only its subclasses.

Since the null set is not a class, it follows that singletons, having no parts except them-
selves, are atoms, and, e�ectively, that sums of individuals are individuals. Furthermore,
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only individuals are parts of individuals, such that individuals are di�erent only if they

overlap di�erent individuals.

Consequently the general principles of unrestricted sum-formation and extensionality

are valid in the domain of individuals. In this respect the restricted domain of individuals is

like the unrestricted universe. This indicates that there are no special conditions of integrity

for being an individual (hence, presumably, the somewhat misleading label `calculus of

individuals' for CM). As for classes (in Lewis' sense), the principles of unrestricted sum-

formation and extensionality are valid as well: sums of classes are classes, and classes are

di�erent only if they overlap di�erent classes.

Given the unrestricted domain of CM there must still exist things beyond the mutually

disjoint domains of individuals, non-empty sets and proper classes. There are sums of

classes and individuals: mixed things with singletons and individuals as parts. These

mixed sums are, according to Lewis (and in contradistinction, say, to Bunt's ensemble

theory (1985)), excluded from set membership, hence from the domain of the singleton

function. This feature, however, does not seem very essential for the account. The singleton
function has to be partial anyway, since otherwise, Russell's paradox threatens. Some sums
of singletons have to be proper classes; they are not a member of anything, and hence have

no singletons.
It is common in set theory to di�erentiate between members (sets and, if any, ure-

lements) and non-members (proper classes) by means of axioms like [AST1] { [AST10] in
place of the paradoxical principle of unrestricted set comprehension. As Lewis' analysis
(see especially [DST0.2] and [TST1]) shows, the formulation of these axioms intertwines

mereological notions with assumptions about singleton formation. Lewis separates these
components thoroughly by giving a self-sustained axiomatic account of the singleton func-
tion, which is called `Mereologized Arithmetic' (MA), since it turns out to be a generalized
version of Peano's arithmetic:

[AMA1] Nothing has two di�erent singletons.

[AMA2] Any part of the null set has a singleton; any singleton has a singleton; any small
sum of singletons has a singleton; and nothing else has a singleton.

[AMA3] No two things have overlapping singletons, nor does any part of the null set

overlap any singleton.

[AMA4] If there are some things, if every part of the null set is one of them, if every

singleton of one of them is one of them, and if every sum of some of them is
one of them, then everything is one of them.

The null set takes the place of zero in MA, and the singleton function takes the place of

the successor function. According to [AMA1] singleton-of is a partial function. Its domain

is speci�ed in [AMA2]. According to [AMA3] singletons are atomic classes (since they are
discrete both from each other and the null set and unrestrictedly everything is composed
out of parts of the null-set and singletons). Finally, [AMA4] parallels the axiom of induction.

Lewis' aim is to regain set theory, i.e. to prove the axioms of ST. But, obviously, MA

(the pure theory of the singleton function) plus CM are not strong enough for this. E.g.,
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they do not exclude unintended domains with only countably many things, whereas ST

presupposes many more.

What is required is a framework which embeds MA and provides the requisite logical

strength. This framework comprises four components: (a) �rst order logic with identity,

(b) CM, (c) a device of plural quanti�cation, and (d) some special assumptions.

(a) and (b) need no comment here. As for (c), however, it needs mention that the

device of plural quanti�cation|used already by Le�sniewski and rediscovered by Boolos

(1984)|confers the logical strength of monadically quanti�ed second order logic to Lewis'

framework|without, however, any commitment to classes.

Note that plural quanti�cation has already been used above e.g. in our formulations

of the axioms [A3], [AST4], [AST5], [AST7], and [AMA4]. It plays its role as well in the

de�nition of small sums of singletons, which turns out to be of crucial importance for MA.

(Cf. the reference to `small sums of singletons' in [AMA2].)

The predicate small is de�ned in tandem with large. Likewise, Lewis de�nes �nite and

in�nite as well as the plural predicates few and many.

[D18] x is large i� there are some things such that (1) no two of them overlap, (2)

their sum is the whole of Reality, and (3) each of them contains exactly one
atom that is part of x and at most one other atom.

[D19] x is small i� it is not large.
[D20] x is in�nite i� x is the sum of some things, each of which is a proper part of

another.

[D21] x is �nite i� it is not in�nite.
[D22] Suppose we have some things such that some large thing does not overlap any

of them. Then they are few i� there is some small thing x, and there are some
things, such that (1) x does not overlap the sum of the former things, (2) each
of the latter things is the sum of one of the former things and one atom of x,

(3) for each of the former things, one of the latter things is the sum of it and

one atom of x, (4) and no atom of x is part of two or more of the latter things.
[D23] Suppose we have some things such that some large thing does not overlap any

of them. Then they are many i� they are not few.

Something is small i� (rendered informally) it has fewer atoms than there are in all the

rest of the universe. Otherwise it is large. And some things are few i� (rendered informally
again) they are less than there are atoms in all the rest of the universe. Otherwise they
are many. Note that the conceptual means for the de�nitions [D18] { [D23]|taken from

the components (a), (b) and (c) of the framework|do not presuppose the existence of

classes. These components alone, however, are not strong enough to derive all the axioms

for ST from MA. Some special assumptions are still needed. They are component (d)

of Lewis' framework. Lewis formulates �ve schemata (two for choice, [S1] and [S2], two
for replacement, [S3] and [S4], and a so-called Dedekind schema, [S5]) as well as three

hypotheses concerning the size of the all-embracing universe. Like plural quanti�cation,
these assumptions are not committed to classes. First, the schemata (in which `. . . ' is a
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place holder for binary relations):

[S1] If there are some things, and each of them . . . some things, and no two of them

. . . the same things, then there are some things such that each of the former

things . . . exactly one of the latter things.

[S2] If nothing . . . itself, and if whenever x . . . y and y . . . z then x . . . z, and if

there are some things such that each of them . . . another one of them, then

also there are some of those things such that (1) among the latter things also,

each one . . . another one; (2) whenever x and y are two of the latter things,

then either x . . . y or y . . . x.

[S3] If each atom of a thing x . . . exactly one atom of a thing y, and if for each

atom of y there is an atom of x that . . . it, and if x is small, then y is small.

[S4] Given some things, and given some other things (not necessarily di�erent),

if each of the former things . . . exactly one of the latter things, and if for each

of the latter things there is one of the former things that . . . it, and if the
former things are few, then the latter things are few.

[S5] If x is a proper part of y, and if each atom of y . . . exactly one atom of x, and

if each atom of x is such that exactly one atom of y . . . it, then y is in�nite.

And now the hypotheses:

[H1] If something is small, then its parts are few.

[H2] If some things are small and few, their sum is small.
[H3] Some sum of atoms is in�nite and yet small.

The point of the three hypotheses is this: Without [H1], [H2] and [H3] the framework of
Lewis' theory allows domains with countably many things for MA. E�ectively, in countable

domains small things are just �nite things, and large things are just in�nite things with only
countably many parts. But given [H1], [H2] and [H3], countable domains are excluded. The

universe exceeds each �xed cardinality, being large enough to embed the intended domain

of ST. E�ectively, the sub-domain of sets in the all-embracing universe of everything is the
cumulative hierarchy of ST (with urelements).

Our claim, that integrity of things in the domain of sets is a matter of size should
be by now straightforward. Only small things have singletons. Singletons, being atoms,

are small. And so are sets in general, since each set is either identical with the null-set

(which is small because it has at most few atoms as parts) or a small sum of singletons.
Sums of some sets which are many exist as well, but they are large. Hence, they have no
singleton, and are not members of any class. They are proper classes. The domain of things

comprising the null set and all the classes divides into two sub-domains: the sub-domain

of large things (i.e. proper classes) and the sub-domain of small things (i.e. sets).
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5 Conclusion

We have compared more or less standard accounts of time-ontology, quasi-topology and

set-theory under the perspective of mereology. At �rst glance, it seems that in developing

these accounts one can make use of the conceptual apparatus of mereology only in some

analogical and distorted sense, and that one is concerned with quite separate and hardly

comparable domains. On closer inspection, however, we arrive at the conclusion that the

accounts under consideration can be seen as dealing with one and the same comprehensive

domain|although under certain characteristic restrictions and focusing on speci�c aspects.

The notions of mereology which are constitutive for the unrestricted universe of everything

are applicable in all three areas of formal investigation without modi�cation or distortion.

Each of the accounts may be axiomatically formulated by adding one non-mereological

primitive to whatever concepts are chosen to develop CM. In the case of time-ontology we

took the two-place predicate precedence as a new primitive, in the case of quasi-topology

we took the one-place predicate region and in the case of set-theory we followed Lewis in
using the singleton function. In each case we could show that we can rely on the same

formal framework, namely �rst order logic with identity plus CM. In the case of set-theory,
however, it turned out that we need a somewhat extended framework providing additional
logical strength.

We get this strength by adding plural quanti�cation to the framework together with
some principles mainly concerning interrelations between the notions of mereology and the

device of plural quanti�cation. The device of plural quanti�cation in itself is useful already
within CM alone, since it allows us to formulate a completely general version of the axiom
of unrestricted fusion which is free of any set-theoretical assumptions. One �nal addition
to the framework still concerns three hypotheses as to the size of the universe, guaranteeing
it to be large enough to embed every set of the ZF-hierarchy.

Note that the additions to the framework (although necessary for the development of
ST), do not presuppose anything speci�c about sets or, in fact, anything speci�c about
anything else. The extended framework is as topic-neutral, precise, well-understood and
ontologically innocent as the unextended framework alone. Whatever there may be within

set theory that is philosophically problematic and ontologically obscure, it does not hinge|

at least according to Lewis|upon anything from the framework. The obscurity of set

theory is the obscurity of the singleton-function exclusively and this function is studied
(but arguably not suÆciently understood) in mereologized arithmetic.

Actually, we could have chosen the extended framework already in our examples of

time-ontology or quasi-topology. But, its additional logical strength is simply super
uous
in these two cases. However, the demonstrated possibility of embedding the divergent

accounts in one formal framework strongly recommends CM as the formal basis of what
might be called `Natural Ontology.' This endeavour concerns the formal analysis and

reconstruction of schemata of basic categorization. In Natural Ontology we are dealing
with such fundamental categories as things and space, actions, events, processes, states

and time, matter, stu� and qualities.

The fundamental categories of Natural Ontology exhibit speci�c material features of
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integrity. We did not contribute much to their elucidation in this paper. Instead we

studied the somewhat less natural, so to speak `arti�cial', ontologies of simple, but formally

interesting structures (linear orders, topology, set theory). We started by pointing out that,

whereas we have (by virtue of CM) a suÆciently clear and precise understanding of the

part-of relation, our understanding of the part-whole relation (or of part-whole relations)

is still in bad shape. And the same is true of the closely associated notion of integrity.

Although its material aspects do not lie within the scope of this investigation, there are,

it seems to us, some formal aspects of integrity that arise from our account.

If, for example, we study a non-empty domain of convex entities within the compre-

hensive universe of CM by using the primitive concept of total precedence, we observe

that this domain does not constitute a model for CM. However, the domain of sums of

such entities does. This might be taken as re
ecting, in a way, that the former entities are

conceptually more integrated than the latter. Likewise: If we study a non-empty domain of

regions within the comprehensive universe, we �nd that this domain need not be a model

of CM. However, the domain of regions, boundary elements and their sums is such a model.
This again re
ects an increase of conceptual integration of regions in contradistinction to
arbitrary sums and products. Finally, studying sets as a non-empty domain within the

comprehensive universe by means of the primitive concept of singleton, we �nd that they
do not constitute a model of CM, whereas e.g. the domains of individuals and classes (or
sums thereof) are such models. We take this as indicating that sets are conceptually more
integrated than mere individuals, classes or arbitrary entities.

One pertinent observation here is the following: whenever we are able to conceptualize

a domain of nice entities within the comprehensive universe (where by `nice entities' (cf.
Lewis 1991: 22) we understand things such that every two of them are mutually discrete|
such as atoms or elephants or points) this domain does not constitute a model of CM,
whereas, of course, the domain of their sums will always be such a model. This indicates
that nice things exhibit a kind of integrity which arbitrary entities lack.

Observations like this, it seems to us, might be taken as a starting point for a formal

theory of integrity.
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