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Ground mereology - M

* Axioms

- Ml P xx

-M2 Pxy&Pyx=>x=y

- M3 Pxy&Pyz=Pxz
* Defined relations:

— Overlap

— Underlap

— Proper part

Extending ground mereology

» Adding Principles asserting the existence of

entities given the existence of other entities

— Whenever an entity has one proper part then it
has more than one proper part

— Given two overlapping entities then there exists
an entity which is the product of them and
given two entities then there exists an entity
which is the sum of them

— Given a set of entities then there exists an entity
that is the sum of the entities in that set

Whenever an entity has one
proper part then it has more than
one proper part

« WSP

— PP xy =(3z)(P zy & -0 zx)
* PPP

— ((32)PP zx & (Vz)(PP zx = PP zy)) = P xy
» SSP

— =P xy =(3z)(P zx & -0 zy)
* RP

— =P xy =>(3z)(z = x-y)

Extensionality (relation to identity)

Of parthood Of proper parthood Of overlap

@)(P zx < (32)PP zx & (2)(0 zx &

Pzyyox=y (z)(PP zx < PP zy) Ozy)o>x=y

Sx=y

Hierarchy of theories

M

Extensionality of P
M + PPP M + WSP

Extensionality of PP
M + PPP + WSP

Extensionality of O \P M + SSP




/ o
GM add SSP

M add WSP

/ o
/GM add SSP

M add WSP

Extending ground mereology

» Adding Principles asserting the existence of
entities given the existence of other entities

— Given two overlapping entities then there exists
an entity which is the product of them and

— given two entities then there exists an entity
which is the sum of them

¢ Closure principles

Binary products

If the two entities a and b overlap then the
product of a and b is an entity ¢ which is
such that for any w if w is a part of c then w
is part of a and part of b:

prod(abc) = (Vw)(P wec < Pwa & Pwb)

Binary sums

« Ifthe two entities a and b underlap then the
sum of a and b is an entity ¢ which is such
that for any w: if w overlaps c then w
overlaps a or w overlaps b and vice versa:
sum(abc) = (Vw)(O we < O wa or O wb)

The binary product axiom

+ Iftwo entities x and overlap then there exists
an entity z which is such that whatever is part
of'z is also part of x and y and vice versa

. APmd O xy =(3z) prod(xyz)
* A4 ensures that products for overlappers
always exist




The binary sum axiom

« Iftwo entities x and underlap then there exists an
entity z which is such that whatever is overlaps z
is also overlaps x or y and vice versa

* Ay, U xy =(3z) sum(xyz)

The 1 operator

» Use the definitions

— a*b =(1z)(Vw)(P wz < Pwa & Pwb)

— atb =(1z)(Vw)(O wz < O wa or O wb)
» Write the axioms as

- A O xy = (Fz)(z = x*y)

- A, Uxy = (3z)(z =x+ty)

* A, ensures that sums for underlappers always
exist
example
X y z
example
v=Xxtz
X y z

v consists of two disconnected pieces

example
u=x+y
X y z
example
w=y+tz
X y z




example

u=x+ty

X is proper part of u

example

v=x+z X y

X is proper part of v

example

u=x+y
v=EXtz

example
u=x+y X y
v=x+tz
u overlaps v
example
u=x+y
v=x+tz x Y
w=y+tz
X y

X+tw=u+tv=x+y+z

CEM

T add A, +A.

/ o
GM add SSP

M/

add WSP




cM

add A++A*T GM

M add WSP

The binary product axiom (2)

. APmd O xy =(3z) prod(xyz)

* A4 ensures that products for overlappers
always exist

* From extensionality of parthood it follows that
that products are unique:
prod (xyz,) & prod (xyz,) = z,=z,

The binary product axiom (3)

. APmd O xy =(3z) prod(xyz)
* A4 ensures that products for overlappers
always exist

* No extensionality therefore no unique products
* prod (abc,) and prod (abc,) hold

a b
c3 cl c2 c4

CEM
T add A+A.
cM
EM
add A++A*T oM mv
M add WSP
A model ruled outby A_

* ¢, and ¢, underlap but NOT sum(c,c,a):

» Not everything that overlaps a also overlaps
C,0rC,: Cy

CEM
add 227
T add A+A.
M
EM

add A++A*T GM add SSP

M add WSP




M+A.+WSP |-- SSP

CEM

T add A+A.

/ o
add A++A*T oM add SSP

M add WSP

cM

CEM
add WS
add A, +A.
M
M

E
add A++A*T GM add SSP

M add WSP

CEM
add WS
add A.+A.
M a

M+WSP+A, |-- SSP

CEM
add WS
add A, +A.
M a

dg7??
EM

add A++A*T GM add SSP

M add WSP

dg7??
EM
add A++A*T GM add SSP
M add WSP
M+WSP+A, |-- SSP
CEM
add WS
add A,+A.
™ ad +A.

/ o
add A++A*T oM add SSP

M add WSP

M+WSP+A., |-- SSP

Lemmata

1. Oxy=P (x*y)x last class
2. 2 Pxy=>(-0Oxy=32z)(Pzx & —-0zy)) athome
3. aPxy=(0Oxy= 3z)(P zx & - O zy)) last class
4. Pzx = (0 zy = O z(x*y)) at home
5. PPxyorx=y=Pxy done

6. Pxy & —x=y = PPxy done

Theorem
M+WSP+A, |-- = P xy = (Fz)(P zx & - O zy)

at home




M+WSP+A., |-- SSP

Lemmata
1. Oxy=P (x*y)x last class
2. = Pxy=(-0Oxy=3z)(Pzx&—-0zy)) athome
3. =Pxy=(0Oxy= (3z)(P zx & - O zy)) last class
4. Pzx = (0 zy = O z(x*y)) at home
5. PPxyorx=y=Pxy done
6. Pxy & —x=y = PP xy done
Theorem
M+WSP+A, |-- =P xy = (Fz)(P zx & - O zy)

at home

L1: Oxy = P (x*y)x

M+WSP+A., |-- SSP

Lemmata
1. Oxy=P (x*y)x last class
2. = Pxy=(-0Oxy=3z)(Pzx&—-0zy)) athome
3. =Pxy=Oxy= Fz)(Pzx& -0 zy)) last class
4. Pzx= (0 zy = O z(x*y)) at home
5. PPxyorx=y=Pxy done
6. Pxy & —x=y = PP xy done
Theorem
M+WSP+A, |-- = P xy = (Fz)(P zx & - O zy)

at home

3 z=x*¥y

4. (Ju)(sum(xyu) & (v)(sum(xyv) = u=v) & u=z) 3Dt
5. sum(xyu) & (v)(sum(xyv) = u=v) & u=z

6. sum(xyu) 5 simp
7. (W)(Pwu<s (Pwx&Pwy)) 6 Dgym
8.

3. z=x*y

4. (Ju)(prod(xyu) & (v)(prod(xyv) = u=v) & u=z) 3Dt
5. prod(xyu) & (v)(prod(xyv) = u=v) & u=z

6. prod(xyu) 5 simp
7. (W)(Pwu<s (Pwx&Pwy)) 6 Dgym
8. ...

M-+WSP+A., |- SSP
O xy = P (x*y)x (using A.)
- Pxy= (0Oxy= (Fz)(P zx & = O zy))

P zx = (0 zy = O z(x*y)) (using A.)

M+WSP+A., |-- SSP

Lemmata

1. Oxy=P (x*y)x last class
2. = Pxy=(-0Oxy=(Fz)(Pzx & —-0zy)) athome
3. aPxy=(0Oxy= (3z)(P zx & - O zy)) last class
4. Pzx = (0 zy = O z(x*y)) at home
5. PPxyorx=y=Pxy done

6. Pxy & —x=y = PP xy done
Theorem

M+WSP+A, |-- = P xy = (Fz)(P zx & = O zy)

at home

M: (= Oxy= (32)(P zx & = O zy))

— Oxy= (32)(P zx & = O zy)

1. = Oxy ass

2. Pxx M1
3.Pxx &-0Oxy 1,2 conj
4. Az)(P xx & — O xy) 3EG

5.2 0xy= (32)(P zx & = O zy) 1-4 CP




M+WSP+A., |-- SSP

Lemmata

1. Oxy=P (x*y)x last class
2. = Pxy=(-0Oxy=(3z)(Pzx & —-0zy)) done

3. =Pxy=(0Oxy= (3z)(P zx & - O zy)) last class
4. Pzx = (0 zy = O z(x*y)) at home
5. PPxyorx=y=Pxy done

6. Pxy & —x=y = PP xy done
Theorem

M+WSP+A, |-- = P xy = (Fz)(P zx & = O zy)

at home

M+WSP+A., |-- SSP

Lemmata

1. Oxy=P (x*y)x last class
2. 2 Pxy=>(=0Oxy=3z)(Pzx & -0zy)) done

3. aPxy=(0Oxy= 3z)(P zx & - O zy)) last class
4. Pzx= (0 zy = O z(x*y)) at home
5. PPxyorx=y=Pxy done

6. Pxy & —x=y = PPxy done

Theorem
M+WSP+A, |-- = P xy = (Fz)(P zx & = O zy)

at home

P zx = (O zy = O z(x*y))
or equivalent (by Exp)
(Pzx & O zy) = O z(x*y)

(P zx & O zy) = O z(x*y)

M+WSP+A., |-- SSP

Lemmata

1. Oxy=P (x*y)x last class
2. = Pxy=(-0Oxy=(3z)(Pzx&—-0zy) done

3. =Pxy=(0Oxy= (3z)(P zx & - O zy)) last class
4. Pzx= (0 zy = O z(x*y)) done

5. PPxyorx=y=Pxy done

6. Pxy & —x=y = PP xy done
Theorem

M+WSP+A, |-- = P xy = (Fz)(P zx & = O zy)

at home

0. Pz&Ozy= Oxy Th

1. Pzx & O zy ass

2. Oxy 1,0 MP

3. @v)(v=xty) 2, A. MP

4. v=x*y

5. W)(P wv < (P wx & P wy)) 4D.

6. Ozy 1 simp

7. (Fu)(P uz & P uy) 6D,

8. Puz&Puy

9. Puz&Pzx (8 simp), (1 simp) conj

10. Pux 9, M3 MP

11. Pux&Puy 10, (8 simp) conj

12. Puv< (Pux & Puy) 55Ul

13. Puv 12, 13 MP

14. Pu(xty) 13,41d

15. Pu(x*y) & Puz 14, (8 simp) conj

16.  (Ju)(P u(x*y) & P uz) 15 EG, 8-15 EI, 4-15 EI

17. O (x*y)z 16D,

18. (Pzx & Ozy) = O z(x*y) 1-17 CP
M-+WSP+A, |-- SSP

Lemmata

1. Oxy=P (x*y)x last class

2. = Pxy=(-0Oxy=(3z)(Pzx&—-0zy) done

3. =Pxy=(0Oxy= (3z)(P zx & - O zy)) last class

4. Pzx= (0 zy = O z(x*y)) done

5. PPxyorx=y=Pxy done

6. Pxy & —x=y = PP xy done

Theorem

M+WSP+A, |-- = P xy = (3z)(P zx & — O zy)

at home




M+WSP+A, |-- = P xy = (3z)(P zx & - O zy)

M+WSP+A., |-- SSP

Lemmata

1. Oxy=P (x*y)x last class
2. = Pxy=(-0Oxy=(3z)(Pzx&—-0zy) done

3. aPxy=(0Oxy= 3z)(P zx & - O zy)) last class
4. Pzx = (0 zy = O z(x*y)) done

5. PPxyorx=y=Pxy done

6. Pxy & —x=y = PPxy done

Theorem

M+WSP+A, |-- = P xy = (3z)(P zx & = O zy)

1. = Pxy ass
2. Oxyor—Oxy Ex. Middle
3. Oxy= (Jz)(Pzx & - O zy) 1,L3 MP
4. —0xy=32)(Pzx & -0 zy) L2
5. Oxy=F2)(Pzx& -0zy) &
-0 xy = (3z)(P zx & - O zy) 3,4 conj
6. (Az)(P zx & - O zy) or
(3z)(P zx & = O zy) 2,5CD
(3z)(P zx & = O zy) 6 taut
—Pxy= 3z)(P zx & - O zy) 1-7CP
M+WSP+A, |-- SSP \/
CEM
add WS
T add A, +A.
™ ad +A.
EM
add A++A*T oM mv

M add WSP

done
GEM
T add Agyp
CEM
add WS
add A +A.,
™M ad, +A.

/ =
add A++A*T GM add SSP

M add WSP

The summation axiom

* zSum X @ means:

— zis the sum of all x that satisfy ¢

* zSumx ¢ =

= (W(0 wz S(F)(9(x) & O xw))

— Anything overlaps z iff there exists an entity x that satisfies ¢
and that overlaps w

e The summation axiom

- (Ix)9(x) = (Iz) z Sum x @
— Whatever ¢ there is if there is one thing that satisfies ¢ then
there exists the sum of all ¢-ers

Strength of the summation axiom

* xty =Sumz (P zx or P zy)

* x *y=Sumz (P zx & P zy)

* x—y=Sumz (P zx & -0 zy)
* ~x = Sum z (=0 zx)

* U=Sumz (P zz)




add A, +A.

CM A
/ =
add A++A*T GM add SSP

M add WSP

M+A,,, |- A, GEM
EM + A, |- A. T
add Ag,,
See Pontow (2003)
CEM

add WS
add A.+A.

™ ad +A.

/ =
add A++A*T MM add SSP

M add WSP

CEM vs. GEM

GEM is strictly stronger than CEM
— Obvious in infinite domains
— But also in finite domains

Not a model of GEM

the Universe is definable

Is a model of CEM
as a sum: U = Sum x [P xx]

GEM
292 MAWSPHA, |- As
add Ag,p,

GM
CEM

add WS,

add Ag,n  :
: add A, +A.

™ ad +A.

/ =
add A++A*T MM add SSP

M add WSP

Varzi: YES

~~ GEM

292 MHAWSPHA, |- As
add Ag,p,

oM CEM
A
: add WS

add Ag,,
add A, +A.

™ ad +A.

/ =
add A++A*T MM add SSP

M add WSP

Varzi: YES Pontow: NO

~~ 4/ GEM

292 MAWSPHA, |- As
add Ag,p,

GM
CEM

add WS,

add Agyn  :
: add A, +A.

™ ad +A.

/ =
add A++A*T MM add SSP

M add WSP

10



Pontow’s counter model

 In order to show that A. is not derivable

from GM = M+WSP+A,

» He gives a model that

— satisfies M, WSP, A,

sum

sum

M+WSP+A,,, NOT |- A,

— and does NOT satisfy A.
— and does not satisfy SSP

» Complicated: model has to satisfy Ag,,, for
arbitrary formulas ¢

Assignment

Show that this structure is not a model for A.

z w Pwz | Pwa |& P wb
a a Paa F Paa F P ab
a b
a cl
a b a c2
€ C
z w Pwz |& Pwa |& P wb
a b
b a P ab T Paa T P ab
b b Pbb F P ba F P bb
b cl
b c2
€ C

z w P wz P wa P wb
a b
b a P ab Paa P ab
b b
b cl
b c2
€ C
z w P wz P wa P wb
a b
cl a Pacl Paa P ab
¢ c, cl b
cl cl
cl c2

11



z w Pwz | Pwa |& P wb
a b

cl a Pacl |T Paa F P ab
¢ c cl b Pbcl |T P ba F P bb

- cl cl

cl c2

z w Pwz | Pwa |& P wb
a b

cl a Pacl |T Paa F P ab
¢ c, cl b Pbcl |T P ba F P bb

cl cl Pclcl | T Pcla |T Pclb

cl c2 Pc2cl |F Pc2a |T Pc2b

z w Pwz |& Pwa |& P wb

a a Paa F Paa F P ab

a b

a cl
a b a c2

b a

b b Pbb F P ba F P bb

b cl

b c2

cl a Pacl |T Paa F P ab
¢ c, cl b Pbcl |T P ba F P bb

cl cl Pclcl | T Pcla |T Pclb

cl c2 Pc2cl |F Pc2a |T Pc2b

c2 a

c2 b

c2 cl Pc2cl |F Pcla |T Pclb

c2 c2

z w Pwz | Pwa |& P wb
a b
cl a Pacl |T Paa F P ab
¢ c, cl b Pbcl |T P ba F P bb
cl cl Pclcl | T Pcla |T Pclb
cl c2
z w Pwz | Pwa |& P wb
a b
€ C
c2 a
c2 b
c2 cl Pc2cl |F Pcla |T Pclb
c2 c2
z w Pwz |& Pwa |& P wb
a a Paa F Paa F P ab
a b
a cl
a a c2
b a
b b Pbb F P ba F P bb
b cl
b c2
cl a
¢ c, cl b
cl cl
cl c2 Pc2cl |F Pc2a |T Pc2b
c2 a
c2 b
c2 cl Pc2cl |F Pcla |T Pclb
c2 c2

12



GEM
add SS T add Ay,

GM=M +7%,,,

CEM
add WS
T add A, +A.
™ ad "
EM

+A.

add A++A*T MM = add SSP

M add WSP

SSP implies RP 227
Varzi, A (2003), Mereology, pg. 15

The corresponding closure principles can thetefore be stated thus:

(PB)  —Pw o 3gfi=vy) Remainder
(F9) 3P o Hz=~v) SSP Com plementation

The first of these is g uivalent to (P.5), but the second is independent of any of the
principles considered 50 far. In many versions, a closure theoty also involves a postu-
Iate to the effect that the domain has an upper bound—that is, there is something (the
“aniversal individual") of which evetytaing is part:

Assignment: prove that SSP implies RP or show that this
is impossible

In which context ?7?777??

SSP implies RP

M+SSP NOT |-- RP M+SSP + A |-- RP

M+SSP NOT |-- RP

Find a structure that models M and SSP but does not
satisfy RP:

— P xy = (3z)(z=x-y)

— P xy =@z)(Vw)(P wz & P wx & -0 wy)
* Assignatoxandbtoy
* Then — P ab holds for the model below

* We need to show that
(Fz)(VwW)(P wz < P wa & —O wb)

does not hold
'/i\\]i
c d e f

a b
c d e f
Satisfies M + SSP
b
o
c d e f
z w Pwz RS P wa & -0 wb
a a Paa F Paa F -0 ab

13



O ©

d e f
z w Pwz RS P wa & -0 wb
a a Paa F Paa F -0 ab
b b Pbb F P ba F -0 bb
a b
O ) ¢
z w P wz RS P wa & -0 wb
a a Paa F Paa F -0 ab
b b Pbb F P ba F -0 bb
c d P dc F Pda T -0 db
d e Ped F Pea T —0eb
a b
d e
z w Pwz RS P wa & -0 wb
a a Paa F Paa F -0 ab
b b Pbb F P ba F -0 bb
c d P dc F Pda T -0 db
d e Ped F Pea T —0eb
e c Pce F Pca T -0 cb
f f P ff F P fa F -0 fb

e f
z w Pwz RS P wa & -0 wb
a a Paa F Paa F -0 ab
b b Pbb F P ba F -0 bb
c d P dc F Pda T -0 db
z w Pwz RS P wa & -0 wb
a a Paa F Paa F -0 ab
b b Pbb F P ba F -0 bb
c d P dc F Pda T -0 db
d e Ped F Pea T —0eb
e c Pce F Pca T -0 cb
b
e

z w Pwz RS P wa & -0 wb
a a Paa F P aa F -0 ab
b b Pbb F P ba F -0 bb
c d Pdc F Pda T -0 db
d e Ped F Pea T —0eb
e c Pce F Pca T -0 cb
f f P ff F P fa F -0 fb

14



This proves: M+SSP NOT |-- RP

But:
 what happens if we add A, 7?7
« M+SSP +A__|-RP 92?2

sum

Remmber:
A model ruled out by A,

a

c 2 c3

* ¢, and ¢, underlap but NOT sum(c,c,a):

» Not everything that overlaps a also overlaps
C,0rC,: Cy

Our counter model is ruled out by A,

a b

» cand d underlap but NOT sum(cda):

» Not everything that overlaps a also overlaps
cord:e

Atomistic and atomless
mereologies

Atoms

* An atom is an entity with no proper parts
* Definition: A x =—(3y) PP yx
* Questions
— Are there atoms?
— If yes is everything entirely made up of atoms?

— Does everything comprise at least of some
atoms?

— Is everything made up of atomless gunk?

Axioms of different strength and
character are added to the
mereology at hand

15



Mereology is neutral

+ All options are logically compatible with

mereology developed so far

Principles regarding atomism can be added

to mereology at any level:

M, MM, EM, CM, CEM, GEM

Principles of atomicity and atomlessness

themselves are mutually incompatible

* Need to be added in separation to
mereology

Atomlessness

There are no atoms

Everything made up of atomless gunk
—-AX

Adding (—A x) to M yields AM

Adding (—A x) to EM yields AEM

In general adding (—A x) to X yields AX

AGEM

+ GEM = M+SSP+A_, |
* AGEM = GEM + —A x
» Example model:

— Regular open sets of the Euclidian plane with
‘P’ interpreted as set-inclusion (Tarski 1935)

— Proves that AGEM is consistent

Atomicity

Weak atomicity (ATO)

* There are atoms through not
everything needs to have a
complete atomic decomposition

* ATO (Ix) Ax

» ATO ensures that there is at least
one atom

Atomicity (AT1)

every entity has an atom as part
AT1: (Ay)(Ay & P yx)
Any finite model of M (EM,...,GEM) is
atomistic, i.e., any finite model of M
satisfies AT1
Consistency of X+ATI1
— Trivial one-element model with ‘P’ interpreted
as as identity
— Models of AGEM: Boolean algebra with the
bottom element removed

16



Models ruled out by
ATI1: (Fy)(Ay & P yx)

Atomic essentialism (AT2)

» Comes in two equivalent versions

— AT2(a): =P xy =(3z)(A z & P zx & —P zy)
(Atomic version of SSP)
—P xy =(3z)(P zx & —O zy) (SSP)

AT2(b): (z)(Az= (P zx =P zy)) = P xy
» Assignment:
— prove the equivalence of AT2(a) and AT2(b)
— prove that AT2 implies SSP, L.e., M+AT2 |- SSP

Equivalence of AT2(a) and AT2(b)

» Use the following logical equivalences:
— Trans
- QN
- DN
— DeM
— Impl

Atomic essentialism (2)

We then can prove that

» Two things are identical iff they have the
same atoms as parts

* x=y&= (z2)(Az=Pzx < Pzy)

» Very strong:
— For identity it is sufficient to look at the atoms.
— Other parts do not matter

Assignment

* Prove that

x=y < (z)(Az=P zx & P zy)

follows from AT2
e ie.,

M+ AT2 |--x=y < (z2)(Az= P zx & P zy)
 Hint:

— it is easier to use AT2(b)

—Use (P = (Q &R)) = (P = Q)&(P = R))

Relations between AT0,AT1,AT2

Masolo & Vieu 01
M
AT1 » AT2
M+SSP
ATO

17



Relations between AT0,AT1,AT2

Masolo & Vieu 01
M
AT1 » AT2 AT1 |-- ATO
M+SSP
ATO

AT1 |-- ATO
1. (3z)(Az&Pzx) ATI1
2. Az&Pzx
3. Az 2 simp
4., (Fz2)Az 3 EG

Relations between AT0,AT1,AT2

Masolo & Vieu 01
M
AT1 » AT2  M+SSP+ATI |-- AT2
M+SSP
ATO

—P xy =>(3z)(Az & P zx & —P zy)

0. Pxy&—-0Oyz=-0Oxz assumed theorem

1. —Pxy ass

2. (3z)(P zx & =0 zy) 1, SSP MP

3. Pzx&—-Ozy

4. (Ju)(Au&Puz) AT1UI

5. Au&Puz

6. Puz&Pzx (5 simp), (3 simp) conj
7. Pux 6, M3 MP

8. Puz&-Ozy (5 simp), (3 simp) conj
9. —=Ouy 8, 0 MP

10. Au&Pux& —Ouy (5 simp), 7, 9 conj

1. Qu)(Au&Pux& — O uy) 10 EG

12. —=Pxy=>EFu)(Au& Pux&—-Ouy) 1-11CP

Weak atomlessness

* There is atomless gunk but not everything
needs to be gunky

* (@AX)(Vy)(Pyx = —Ay)

Nihilism

* Everything is an atom
* Ax
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Summary

GEM
add SS add Ay,
M

GM=M +7A,, CE

add WS,

T add A, +A.
™ ad +A.

/ =
add A++A*T MM add SSP

M add WSP

Weak atomicity (ATO)

* There are atoms through not
everything needs to have a
complete atomic decomposition

* ATO (Ix) Ax

» ATO ensures that there is at least
one atom

Atomicity (AT1)

* every entity has an atom as part

* AT1: Qy)(Ay & P yx)

* Any finite model of M (EM,...,GEM) is
atomistic, i.e., any finite model of M
satisfies AT1

Atomic essentialism (AT2)

» Comes in two equivalent versions

— AT2(a): =P xy =(3z)(A z & P zx & —P zy)
(Atomic version of SSP)
—P xy =(3z)(P zx & —O zy) (SSP)

AT2(b): (z)(Az= (P zx =P zy)) = P xy
* We then can prove that

— Two things are identical iff they have the same
atoms as parts

-x=y & (2)(Az=>Pzx o Pzy)

Relations between AT0,AT1,AT2

Masolo & Vieu 01

M

/_\ MSSPEATI ‘" AT2

» AT2

AT1
\ M+SSP/ ATI |- ATO
ATO
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Assignments

* prove the equivalence of AT2(a) and
AT2(b) (check hints above)

* prove that AT2 implies SSP, i.e., M+AT?2 |-
SSP

* Prove that x=y < (z)(A z = P zx < P zy)
follows from AT2 (check the hints above)
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