Mereology 6

Bittner3@buffalo.edu

Atomistic and atomless mereologies

Atoms

- An atom is an entity with no proper parts
- Definition: A $x \equiv \neg(\exists y) PP yx$
- · Questions
 - $\ Are \ there \ atoms?$
 - If yes is everything *entirely* made up of atoms?
 - Does everything comprise at least of some atoms?
 - Is everything made up of atomless gunk?

Axioms of different strength and character are added to the mereology at hand

Mereology is neutral

- All options are logically compatible with mereology developed so far
- Principles regarding atomism can be added to mereology at any level:
 M, MM, EM, CM, CEM, GEM
- Principles of atomicity and atomlessness themselves are *mutually incompatible*
- Need to be added *in separation* to mereology

Atomlessness

- · There are no atoms
- · Everything made up of atomless gunk
- ¬A x

Atomicity

Weak atomicity and atomicity

- · Weak atomicity
 - There are atoms through not everything needs to have a complete atomic decomposition
 - -AT0 ($\exists x$) Ax
 - AT0 ensures that there is at least one atom
- Atomicity
 - every entity has an atom as part
 - AT1: (∃y)(Ay & P yx)

Atomic essentialism (AT2)

- Comes in two equivalent versions
 - AT2(a): ¬P xy ⇒(\exists z)(A z & P zx & ¬P zy) (Atomic version of SSP)
 - $\neg P \ xy \Rightarrow (\exists z)(P \ zx \& \neg O \ zy) \ (SSP)$ - AT2(b): (z)(A z \Rightarrow (P \ zx \Rightarrow P \ zy)) \Rightarrow P \ xy
- Assignment:
 - prove the equivalence of AT2(a) and AT2(b)
 - prove that AT2 implies SSP, I.e., M+AT2 |- SSP

Equivalence of AT2(a) and AT2(b)

- Use the following logical equivalences:
 - Trans
 - ON
 - DN
 - DeM
 - Impl

$AT2(a) \Leftrightarrow AT2(b)$

- 1. $\neg P xy \Rightarrow (\exists z)(A z \& P zx \& \neg P zy)$ ass
- 2. $\neg(\exists z)(A z \& P zx \& \neg P zy) \Rightarrow \neg \neg P xy 1 trans$
- 3. $\neg(\exists z)(A z \& P zx \& \neg P zy) \Rightarrow P xy$ 2 DN
- 4. $(z)\neg (A z \& P zx \& \neg P zy) \Rightarrow P xy$ 3 QN
- 5. $(z)(\neg A z \text{ or } \neg (P zx \& \neg P zy)) \Rightarrow P xy 4 DeM$
- 6. $(z)(\neg A z \text{ or } (P zx \Rightarrow P zy)) \Rightarrow P xy$ 5 Imp
- 7. $(z)(A z \Rightarrow (P zx \Rightarrow P zy)) \Rightarrow P xy$ 6 Imp

M+A	$M+AT2 \mid -\neg P xy \Rightarrow (\exists z)(P zx \& \neg O xy)$			
0.	P xy⇒PP xy or x=y			
1.	¬P xy	ass		
2.	(∃z)(Az & P zx & ¬P zy)	1 AT2 MP		
3.	Az & P zx & ¬P zy			
4.	O zy	ass		
5.	(∃u)(P uz & P uy)	4 D _O		
6.	P uz & P uy			
7.	P uz	6 simp		
8.	PP uz or u=z	7,0 MP		
9.	u=z	ass		
10.	¬P uy	(3 simp), 9 Id		
11.	P uy & ¬P uy	(6 simp), 10 conj		
12.	¬ (u=z)	9-11 IP		
13.	PP uz	8,12 DS		
14.	(∃u) PP uz	13 EG		
15.	¬ A z	14 D _A		
16.	A z & ¬ A z	(3 simp), 15 conj		
17.	¬ O zy	4-16 IP		
18.	P zx & ¬ O zy	(3 simp), 17 conj		
19.	(∃u) (P zx & ¬ O zy)	18 EG		
20	$\neg P xy \Rightarrow (\exists u) (P zx \& \neg O zy)$	1-19 CP		

Atomic essentialism (AT2)

- Comes in two equivalent versions
 - AT2(a): ¬P xy ⇒(\exists z)(A z & P zx & ¬P zy) (Atomic version of SSP)

$$\neg P xy \Rightarrow (\exists z)(P zx \& \neg O zy) (SSP)$$

- $-AT2(b): (z)(Az \Rightarrow (Pzx \Rightarrow Pzy)) \Rightarrow Pxy$
- Assignment:
 - prove the equivalence of AT2(a) and AT2(b)
 - prove that AT2 implies SSP, I.e., M+AT2 |- SSP \

Atomic essentialism (2)

Given AT2 we can prove that

- Two things are identical iff they have the same atoms as parts
- $x=y \Leftrightarrow (z)(A z \Rightarrow P zx \Leftrightarrow P zy)$
- Very strong:
 - For identity it is sufficient to look at the atoms.
 - Other parts do not matter

Assignment

• Prove that $x = y \Leftrightarrow (z)(A \ z \Rightarrow P \ zx \Leftrightarrow P \ zy)$

follows from AT2

- i.e., $M+ AT2 \mid --x=y \Leftrightarrow (z)(A z \Rightarrow P zx \Leftrightarrow P zy)$
- Hint
 - it is easier to use AT2(b)
 - Use $(P \Rightarrow (Q \& R)) \Rightarrow ((P \Rightarrow Q)\&(P \Rightarrow R))$

```
M+ AT2 |-- (z)(Az \Rightarrow Pzx \Leftrightarrow Pzy) \Rightarrow x=y
0. (P \Rightarrow (Q \& R)) \Rightarrow ((P \Rightarrow Q)\&(P \Rightarrow R))
1. (z)(Az \Rightarrow Pzx \Leftrightarrow Pzy)
2. A z \Rightarrow P zx \Leftrightarrow P zy
3. A z \Rightarrow ((P zx \Rightarrow P zy) \& (P zy \Rightarrow P zx))
                                                                                  2 Eq
4. (Az \Rightarrow (Pzx \Rightarrow Pzy)) & (Az \Rightarrow (Pzy \Rightarrow Pzx))
                                                                                  3, 0 MP
5. (Az \Rightarrow (Pzx \Rightarrow Pzy))
                                                                                  4 simp
6. (z)(Az \Rightarrow (Pzx \Rightarrow Pzy))
                                                                                  5 UG
                                                                                  6,AT2 MP
7. P xy
      (Az \Rightarrow (Pzy \Rightarrow Pzx))
                                                                                  4 simp
      (z)(A z \Rightarrow (P zy \Rightarrow P zx))
                                                                                  8 UG
10. P yx
                                                                                  9,AT2 MP
11. P xy & P yx
                                                                                  7,10 conj
12. x=y
                                                                                  11, M2 MP
13. (z)(A z \Rightarrow P zx \Leftrightarrow P zy) \Rightarrow x=y
                                                                                  1-12 CP
```

```
M+AT2 \mid --x=y \Rightarrow (z)(Az \Rightarrow Pzx \Leftrightarrow Pzy)
1. x=y
2. Az
3. P zx
                                                           ass
4. P zy
                                                            3,1 Id
5. P zx \Rightarrow P zy
                                                            3-4 CP
6. P zy
7. P zx
                                                            6,1 Id
8. P zy \Rightarrow P zx
                                                            6-7 CP
9. P zx \Leftrightarrow P zy
                                                           (5,8 conj) Eq
10. Az \Rightarrow (P zx \Leftrightarrow P zy)
                                                            2-9 CP
11. (z)(Az \Rightarrow (P zx \Leftrightarrow P zy))
                                                            10 UG
12. x=y \Rightarrow (z)(A z \Rightarrow P zx \Leftrightarrow P zy)
                                                            1-11 CP
```

- We proved that $x=y \Leftrightarrow (z)(A z \Rightarrow P zx \Leftrightarrow P zy)$ follows from AT2
- i.e., $M+AT2 \mid --x=y \Leftrightarrow (z)(Az \Rightarrow Pzx \Leftrightarrow Pzy)$

. $\neg P xy \Rightarrow (\exists z)(A z \& P zx \& \neg P zy)$	
. ¬(∃x)Ax	ass
. (x) ¬ Ax	1 QN
. ¬ Ax	2 UI
. ¬¬ (∃y)PP yx	3 D ₄
. (∃y)PP yx	4 DeM
. PP yx	
. P yx & ¬(x=y)	6 D _{pp}
. ¬(x=y)	7 simp
. ¬(P xy & P yx)	8, M2 MT
 ¬P xy or ¬ P yx 	9 DeM
1. ¬P xy	(7 simp),10 DS
 (∃z)(A z & P zx & ¬P zy) 	11, 0 MP
 A z & P zx & ¬P zy 	
4. Az	13 simp
 (∃x) Ax 	14 EG
 (∃x) Ax & ¬(∃x)Ax 	15, 1 conj
 (∃x) Ax 	1-16 IP

Point set topology

· Assume the set of

- Neighborhoods of points
 - points or the Euclidian plane
 - A neighborhood of a Point P is a disk of radius v with center

Sets and neighborhoods Classification of points with respect to X Interior points wrt. X: - Points which have a \odot neighborhood which contains only members of X

A set points X

Sets and neighborhoods

Classification of points with respect to X

- Interior points:
 - Points which have a neighborhood which contains only members of X

Sets and neighborhoods

Boundary points wrt. X:

A set points X

- Points which have a neighborhood which
 - contains members of X
 - And contains nonmembers of X

Sets and neighborhoods

Boundary points:

- Points which have a neighborhood which
 - contains members of X
 - And contains nonmembers of X

Sets and neighborhoods

Boundary points:

- Points which have a neighborhood which
 - contains members of X
 - And contains nonmembers of X

Sets and neighborhoods

Exterior points wrt X:

• Points which have a neighborhood which soes NOTcontain members of X

Sets and neighborhoods

Exterior points wrt X:

 Points which have a neighborhood which soes NOTcontain members of X

Sets and neighborhoods

Exterior points wrt X:

 Points which have a neighborhood which soes NOTcontain members of X

The interior of a Set

A set points X

- X is a set
- i(X) the interior of X
- Is the set which contains all of Xs interior points
- $i(X) \subseteq X$

The boundary of a Set

- X is a set
- b(X) the boundary of X
- Is the set which contains all of Xs boundary points
- b(X) contains some points which are not elements of X

The exterior of a Set

A set points X

- X is a set
- e(X) the exterior of X
- Is the set which contains all of Xs exterior points
- e(X) contains points
 only which are not elements of X

The closure of a Set

- X is a set
- cl(X) the closure of X
- Is the set which contains all of Xs *interior and boundary* points
- cl(X) contains some points which are not elements of X

Relationships between interior, boundary, closure, and exterior

- $i(X) \subseteq X$
- $i(X) \cap b(X) = \emptyset$
- $cl(X)=i(X) \cup b(X)$
- Let P be the points of the plane and $X \subseteq P$ then we have

$$P = i(X) \cup b(X) \cup e(X)$$

Regular open sets

- A set is *open* iff it contains only *interior points*
- A set is *regular open* iff it is identical to the *interior of its closure*
- $ROX \equiv X = I(cl(X))$

Non-regular open sets • Let X be a set without the point P • Let i(X) be the interior of X • i(X) is open • i(X) is NOT regular

Non-regular open sets $P \notin X$ P is a boundary point of XA set points X

Regular closed sets

- A set is *closed* iff it contains only *interior* and boundary points
- A set is *regular closed* iff it is identical to the *closure of its interior*
- $RCX \equiv X = cl(i(X))$

Regular sets are topologically nice and regular – no lower dimensional holes or spikes

Topologies

- A set Z with a system of (regular) open sets
 Z such that
 - $-Z \in Z$
 - $-\varnothing\in Z$
 - \boldsymbol{Z} is closed under finite (regularized) unions If $X \in \boldsymbol{Z} \& Y \in \boldsymbol{Z}$ then $X \cup Y \in \boldsymbol{Z}$
 - -Z is closed under arbitrary (regularized) intersections

If $U \subseteq Z$ then $\bigcap_{Y \in U} \in Z$

Topologies

- A set Z with a system of (regular) closed sets Z such that
 - $-Z \in Z$
 - $-\varnothing\in \mathbf{Z}$
 - Z is closed under finite (regularized) intersections

If $X \in \mathbb{Z} \& Y \in \mathbb{Z}$ then $X \cap Y \in \mathbb{Z}$

- **Z** is closed under arbitrary (regularized) unions If U ⊆ **Z** then $\bigcup_{Y \in U} \in \mathbf{Z}$

Connectedness

- · Two sets X and Y are connected iff
 - X intersects the closure of Y or Y intersects the closure of X
 - $-X \cap cl(Y) \neq \emptyset \text{ or } Y \cap cl(X) \neq \emptyset$
- Important:
 - For connectedness the interiors do NOT need to overlap
 - Connected sets do NOT need to share interior points
- Regular closed sets: connected if they share at least one point of their closures

X is connected to Y

X is connected to Y

Mereotopology – the formal theory of parthood and connectedness

Need for topology (Varzi)

- Mereological reasoning cannot do justice to the notion of a *whole*
- Distinction between
 - one-piece, self-connected wholes like stone, whistle
 - Scattered entities made up of several disconnected parts like a broken glass, a bikini, a sum of two disjoint cats

cannot be expressed in mereology

Need for topology (2)

- In GEM for any connection of parts there is in principle a complete whole: the mereological sum
- There is no way, within mereology, to draw a distinction between 'good' and 'bad' sums
 - between
 - Integral wholes and
 - Scattered sums of disperate entities

Way out:

- Mereological account must be supplemented with a topological machinery of some sort
- Mereology a *part-of* theory
- Mereotopology is *part-whole* theory
- Add a primitive binary relation C xy interpreted as x is-topologically-connected-to y

Why not using point set topology?

- · Point set topology is based on set theory
- If we found our topological theory on sets then we import all philosophical problems of sets:
 - Need for (minimal) elements
 - How can infinitely many non-extended points constitute extended entities?
 - See Barry's 'topological foundations of cognitive science' paper for more arguments

BUT!!

- Using point set topology at the level of models is gooooood!
- · Helps us
 - To better understand our theories
 - $-\ \mbox{To}$ find proofs and counter models

Ground topology

Ground mereology - M

- Axioms
 - M1 P xx
 - -M2 P xy & P yx \Rightarrow x = y
 - -M3 P xy & P yz \Rightarrow P xz
- · Defined relations:
 - Overlap
 - Underlap
 - Proper part

Interpretation of ground mereology in a topological space $T=(Z, \mathbb{Z})$

- P xy is interpreted as $i(X) \subseteq i(Y)$ with X,Y $\in \mathbb{Z}$
- From the interpretation of P it follows that
 O xy holds if and X and Y share at least one
 interior point

Ground topology

- Primitive relation *C xy*
- Interpretation x is-connected-to y
- If x and y are interpreted of regular closed sets of some topological space then C xy is interpreted as the relation which holds iff the closures of X and Y share at least one point

C xy

Axioms of ground topology

• C1: C is reflexive C xx

Axioms of ground topology

• C1: C is reflexive

C xx

• C2: C is symmetric

 $C xy \Rightarrow C yx$

Axioms of ground topology

• C1: C is reflexive

C xx

• C2: C is symmetric

 $C xy \Rightarrow C yx$

Axioms of ground topology

• C1: C is reflexive

C xx

• C2: C is symmetric

 $C xy \Rightarrow C yx$

Axioms of ground topology

• C1: C is reflexive

C xx

• C2: C is symmetric

 $C xy \Rightarrow C yx$

• C3: relation between P and C if x is a part of y then everything that is connected to x is also connected to y

 $P xy \Rightarrow (z)(C zx \Rightarrow C zy)$

NTPPi $xy = PP xy & \neg(\exists z)(EC zx \& EC zy)$

NTPPi xy

NTPP $xy = PP xy & \neg(\exists z)(EC zx \& EC zy)$

NTPP xy

Assignments

Prove the following theorems

- 1. DC, EC, PO are symmetric e.g., DC $xy \Rightarrow DC yx$
- 2. (N)TPP and (N)TPPi are asymmetric e.g., TPP $xy \Rightarrow \neg TPPi xy$

$O xy \Rightarrow C xy$	
0. $P xy \Rightarrow (z)(C zx \Rightarrow C zy)$	C3
1. O xy	ass
2. (∃z)(P zx & P zy)	1 D _O
3. P zx & P zy	
4. P zx	3 simp
5. $(u)(C uz \Rightarrow C ux)$	4,0 MP
6. $C yz \Rightarrow C yx$	5 UI
7. P zy	3 simp
8. (u)(C uz \Rightarrow C uy)	7,0 MP
9. $C zz \Rightarrow C zy$	8 UI
10. C zy	9, C1 MP
11. C yz	10, C2 MP
12. C yx	11, 6 MP
13. C xy	12, C2 MP
14. O $xy \Rightarrow C xy$	1-13 CP

More assignments

- Prove the following theorems PO $xy \Rightarrow O xy$

 - ¬(PO xy & NTPP xy)
 - DC xy \Rightarrow DR xy
 - $EC xy \Rightarrow DR xy$
 - ¬(EC xy & DC xy)

using their definitions and C1-C3

Summary

Weak atomicity and atomicity

- · Weak atomicity
 - There are atoms through not everything needs to have a complete atomic decomposition
 - -AT0 ($\exists x$) Ax
 - AT0 ensures that there is at least one atom
- Atomicity
 - every entity has an atom as part
 - AT1: (∃y)(Ay & P yx)

Atomic essentialism (AT2)

- Comes in two equivalent versions
 - AT2(a): ¬P xy ⇒(\exists z)(A z & P zx & ¬P zy) (Atomic version of SSP)
 - $\neg P \ xy \Rightarrow (\exists z)(P \ zx \ \& \ \neg O \ zy) \ (SSP)$ AT2(b): (z)(A z \Rightarrow (P \ zx \Rightarrow P \ zy)) \Rightarrow P \ xy
- Assignment:
 - prove the equivalence of AT2(a) and AT2(b)
 - prove that AT2 implies SSP, I.e., M+AT2 |- SSP

Relations between AT0,AT1,AT2

Masolo & Vieu 01

Point set topology

Neighborhoods of points

- Assume the set of points or the Euclidian plane
- A neighborhood of a Point P is a disk of radius v with center

The closure of a Set

- · X is a set
- cl(X) the closure of X
- Is the set which contains all of Xs *interior and boundary* points
- cl(X) contains some points which are not elements of X

Relationships between interior, boundary, closure, and exterior

- $i(X) \subseteq X$
- $i(X) \cap b(X) = \emptyset$
- $cl(X)=i(X) \cup b(X)$
- Let P be the points of the plane and $X \subseteq P$ then we have

$$P = i(X) \cup b(X) \cup e(X)$$

Regular open sets

- A set is *open* iff it contains only *interior points*
- A set is *regular open* iff it is identical to the *interior of its closure*
- $ROX \equiv X = I(cl(X))$

Regular closed sets

- A set is *closed* iff it contains only *interior* and boundary points
- A set is *regular closed* iff it is identical to the *closure of its interior*
- $RCX \equiv X = cl(i(X))$

Topologies

- A set Z with a system of (regular) closed sets Z such that
 - $-Z \in Z$
 - $-\varnothing\in \mathbf{Z}$
 - Z is closed under finite (regularized) intersections

If $X \in \mathbb{Z} \& Y \in \mathbb{Z}$ then $X \cap Y \in \mathbb{Z}$

- **Z** is closed under arbitrary (regularized) unions If U ⊆ **Z** then $\bigcup_{Y \in U} \in \mathbf{Z}$

Connectedness

- · Two sets X and Y are connected iff
 - X intersects the closure of Y or Y intersects the closure of X
 - $-\:X\cap cl(Y)\neq \varnothing\: or\: Y\cap cl(X)\neq \varnothing$
- Important:
 - For connectedness the interiors do NOT need to overlap
 - Connected sets do NOT need to share interior points
- Regular closed sets: connected if they share at least one point of their closures

Axioms of ground topology

- C1: C is reflexive C xx
- C2: C is symmetric $\dot{C} xy \Rightarrow C yx$
- C3: relation between P and C if x is a part of y then everything that is connected to x is also connected to y $P xy \Rightarrow (z)(C zx \Rightarrow C zy)$

Assignments

Prove the following theorems

- 1. DC, EC, PO are symmetric e.g., DC $xy \Rightarrow DC yx$
- (N)TPP and (N)TPPi are asymmetric e.g., TPP $xy \Rightarrow \neg TPPi xy$
- 3. Prove the following theorems

 PO $xy \Rightarrow O xy$ PO $xy \Rightarrow O xy$ PO $xy \Rightarrow DR xy$

 - $EC xy \Rightarrow DR xy$
 - ¬(EC xy & DC xy) using their definitions and C1-C3