Mereology 6

Bittner3@buffalo.edu

Atomistic and atomless mereologies

Atoms

- An atom is an entity with no proper parts
- Definition: A $x \equiv \neg(\exists y) PP yx$
- Questions
 - Are there atoms?
 - If yes is everything *entirely* made up of atoms?
 - Does everything comprise at least of some atoms?
 - Is everything made up of atomless gunk?

Axioms of different strength and character are added to the mereology at hand

Mereology is neutral

- All options are logically compatible with mereology developed so far
- Principles regarding atomism can be added to mereology at any level:
 M, MM, EM, CM, CEM, GEM
- Principles of atomicity and atomlessness themselves are *mutually incompatible*
- Need to be added *in separation* to mereology

Atomlessness

- There are no atoms
- Everything made up of atomless gunk
- ¬A x

Atomicity

Weak atomicity and atomicity

- Weak atomicity
 - There are atoms through not everything needs to have a complete atomic decomposition
 - -AT0 ($\exists x$) Ax
 - AT0 ensures that there is at least one atom
- Atomicity
 - every entity has an atom as part
 - AT1: (∃y)(Ay & P yx)

Atomic essentialism (AT2)

- Comes in two equivalent versions
 - AT2(a): ¬P xy ⇒(∃z)(A z & P zx & ¬P zy) (Atomic version of SSP) ¬P xy ⇒(∃z)(P zx & ¬O zy) (SSP) - AT2(b): (z)(A z ⇒ (P zx ⇒P zy)) ⇒ P xy
- Assignment:
 - prove the equivalence of AT2(a) and AT2(b)
 - prove that AT2 implies SSP, I.e., M+AT2 |- SSP

Equivalence of AT2(a) and AT2(b)

- Use the following logical equivalences:
 - Trans
 - -QN
 - -DN
 - DeM
 - Impl

```
AT2(a) \Leftrightarrow AT2(b)
1. \neg P xy \Rightarrow (\exists z)(A)
```

- 1. $\neg P xy \Rightarrow (\exists z)(A z \& P zx \& \neg P zy)$ ass
- 2. $\neg(\exists z)(A z \& P zx \& \neg P zy) \Rightarrow \neg \neg P xy 1 trans$
- 3. $\neg(\exists z)(A z \& P zx \& \neg P zy) \Rightarrow P xy$ 2 DN
- 4. $(z)\neg(A z \& P zx \& \neg P zy) \Rightarrow P xy$ 3 QN
- 5. $(z)(\neg A z \text{ or } \neg (P zx \& \neg P zy)) \Rightarrow P xy 4 DeM$
- 6. $(z)(\neg A z \text{ or } (P zx \Rightarrow P zy)) \Rightarrow P xy$ 5 Imp
- 7. $(z)(A z \Rightarrow (P zx \Rightarrow P zy)) \Rightarrow P xy$ 6 Imp

M+	$AT2 \mid - \neg P xy \Rightarrow (\exists z)(P zx \& \neg O xy)$	
0.	P xy \Rightarrow PP xy or x=y	
1.	¬P xy	ass
2.	$(\exists z)(Az \& P zx \& \neg P zy)$	1 AT2 MP
3.	Az & P zx & ¬P zy	
4.	O zy	ass
5.	$(\exists u)(P uz \& P uy)$	$4 D_{O}$
6.	P uz & P uy	
7.	P uz	6 simp
8.	PP uz or u=z	7,0 MP
9.	u=z	ass
10.	¬P uy	(3 simp), 9 Id
11.	P uy & ¬P uy	(6 simp), 10 coi
12.	$\neg (u=z)$	9-11 IP
13.	PP uz	8,12 DS
14.	(∃u) PP uz	13 EG
15.	$\neg Az$	$14 D_A$
16.	$Az\& \neg Az$	(3 simp), 15 coi
17.	¬ O zy	4-16 IP
18.	P zx & ¬ O zy	(3 simp), 17 cor
	$(\exists u) (P zx \& \neg O zy)$	18 EG
	$\neg P xy \Rightarrow (\exists u) (P zx \& \neg O zy)$	1-19 CP

Atomic essentialism (AT2)

- Comes in two equivalent versions
 - -AT2(a): ¬P xy ⇒ (∃z)(A z & P zx & ¬P zy)(Atomic version of SSP)

$$\neg P xy \Rightarrow (\exists z)(P zx \& \neg O zy) (SSP)$$

- -AT2(b): $(z)(Az \Rightarrow (Pzx \Rightarrow Pzy)) \Rightarrow Pxy$
- Assignment:
 - prove the equivalence of AT2(a) and AT2(b)
 - prove that AT2 implies SSP, I.e., M+AT2 |- SSP

Atomic essentialism (2)

Given AT2 we can prove that

- Two things are identical iff they have the same atoms as parts
- $x=y \Leftrightarrow (z)(A z \Rightarrow P zx \Leftrightarrow P zy)$
- Very strong:
 - For identity it is sufficient to look at the atoms.
 - Other parts do not matter

Assignment

• Prove that $x=y \Leftrightarrow (z)(A z \Rightarrow P zx \Leftrightarrow P zy)$ follows from AT2

• i.e.,

$$M+AT2 \mid --x=y \Leftrightarrow (z)(Az \Rightarrow Pzx \Leftrightarrow Pzy)$$

- Hint:
 - it is easier to use AT2(b)
 - Use (P \Rightarrow (Q & R)) \Rightarrow ((P \Rightarrow Q)&(P \Rightarrow R))

```
M+AT2 \mid -- (z)(A z \Rightarrow P zx \Leftrightarrow P zy) \Rightarrow x=y
0. (P \Rightarrow (Q \& R)) \Rightarrow ((P \Rightarrow Q)\&(P \Rightarrow R))
1. (z)(A z \Rightarrow P zx \Leftrightarrow P zy)
                                                                                    ass
2. A z \Rightarrow P zx \Leftrightarrow P zy
                                                                                     1 UI
3. A z \Rightarrow ((P zx \Rightarrow P zy) \& (P zy \Rightarrow P zx))
                                                                                    2 Eq
4. (Az \Rightarrow (Pzx \Rightarrow Pzy)) & (Az \Rightarrow (Pzy \Rightarrow Pzx))
                                                                                    3, 0 MP
5. (Az \Rightarrow (Pzx \Rightarrow Pzy))
                                                                                    4 simp
6. (z)(A z \Rightarrow (P zx \Rightarrow P zy))
                                                                                    5 UG
7. P xy
                                                                                    6,AT2 MP
8. (Az \Rightarrow (Pzy \Rightarrow Pzx))
                                                                                    4 simp
9. (z)(A z \Rightarrow (P zy \Rightarrow P zx))
                                                                                    8 UG
10. P yx
                                                                                    9,AT2 MP
11. P xy & P yx
                                                                                    7,10 conj
12. x=y
                                                                                    11, M2 MP
13. (z)(A z \Rightarrow P zx \Leftrightarrow P zy) \Rightarrow x=y
                                                                                     1-12 CP
```

```
M+ AT2 |-- x=y \Rightarrow (z)(A z \Rightarrow P zx \Leftrightarrow P zy)
1. x=y
                                                            ass
2. Az
                                                            ass
3. P zx
                                                            ass
4. P zy
                                                            3,1 Id
5. P zx \Rightarrow P zy
                                                            3-4 CP
6. P zy
                                                            ass
7. P zx
                                                            6,1 Id
8. P zy \Rightarrow P zx
                                                            6-7 CP
9. P zx \Leftrightarrow P zy
                                                            (5,8 conj) Eq
10. Az \Rightarrow (P zx \Leftrightarrow P zy)
                                                            2-9 CP
11. (z)(Az \Rightarrow (P zx \Leftrightarrow P zy))
                                                            10 UG
12. x=y \Rightarrow (z)(A z \Rightarrow P zx \Leftrightarrow P zy)
                                                            1-11 CP
```

- We proved that $x=y \Leftrightarrow (z)(A z \Rightarrow P zx \Leftrightarrow P zy)$ follows from AT2
- i.e., $M+AT2 \mid --x=y \Leftrightarrow (z)(Az \Rightarrow Pzx \Leftrightarrow Pzy)$

Relations between AT0,AT1,AT2

	$\neg P xy \Rightarrow (\exists z)(A z \& P zx \& \neg P zy)$	
	$\neg(\exists x)Ax$	ass
2.	(x) - Ax	1 QN
3.	$\neg Ax$	2 UI
١.	$\neg\neg$ (\exists y)PP yx	$3 D_A$
5.	$(\exists y)PP yx$	4 DeM
ó.	PP yx	
7.	$P yx & \neg(x=y)$	$6 D_{pp}$
	$\neg(x=y)$	7 simp
	$\neg (P xy \& P yx)$	8, M2 MT
	$\neg P xy or \neg P yx$	9 DeM
	¬P xy	(7 simp),10 DS
	$(\exists z)(A z \& P zx \& \neg P zy)$	11, 0 MP
	$A z & P zx & \neg P zy$	ŕ
	Az	13 simp
5.	$(\exists x) Ax$	14 EG
	$(\exists x)$ Ax & $\neg(\exists x)$ Ax	15, 1 conj
	$(\exists x) Ax \leftarrow (\exists x) Ax$	1-16 IP

Relations between AT0,AT1,AT2

M+A	$AT2 \mid (\exists z)(Az \& P zx)$	
0.	$(z)((A z \&P zx) \Rightarrow P zy)) \Rightarrow P xy$	
1.	$\neg (\exists z)(Az \& P zx)$	ass
2.	$(z) \neg (Az \& P zx)$	1 QN
	$(z)(\neg P zx or \neg Az)$	2 DeM
4.	$\neg P xx \text{ or } \neg Ax$	3 UI
5.	$\neg Ax$	4, M1 DS
6.	$\neg \neg (\exists y)PP \ yx$	5 D,
7.	$(\exists y)PPyx$	6 DN
8.	$P yx & \neg (y=x)$	$7 D_{pp}$
9.	Az&Pzx	ass
10.	$\neg P zx or \neg Az$	3 UI
11.	$\neg Az$	(9 simp),10 DS
12.	$Az \& \neg Az$	(9 simp), 11 conj
13.	$(Az \& \neg Az)$ or P zy	12 add
14.	(Az or P zy) & $(\neg Az \text{ or P zy})$	13 dist
15.	$(\neg Az \Rightarrow Pzy) & (Az \Rightarrow Pzy)$	14 Imp
16.	¬ Az or Az	ExMiddle
17.	P zy or Pzy	15, 16 CD
18.	P zy	17 taut
19.	$(A z \&P zx) \Rightarrow P zy$	9-18 CP
20.	$(z)((A z \&P zx) \Rightarrow P zy)$	19 UG
21.	P xy	20, 0 MP
22.	P yx & P xy	(8 simp), 21 conj
23.	x=y	22, M2 MP
24.	$\neg (y=x) \& x=y$	(8 simp) 23 conj
25.	$(\exists z)(Az \& P zx)$	1-24 IP

Point set topology

Neighborhoods of points

- Assume the set of points or the Euclidian plane
- A neighborhood of a Point P is a disk of radius v with center P

- Interior points wrt. X:
 - Points which have a neighborhood which contains only members of X

Sets and neighborhoods

Classification of points with respect to X

- Interior points:
 - Points which have
 a neighborhood
 which contains
 only members of X

Classification of points with respect to X

- Interior points:
 - Points which have
 a neighborhood
 which contains
 only members of X

Sets and neighborhoods

Boundary points wrt. X:

- Points which have a neighborhood which
 - contains members of X
 - And contains nonmembers of X

Boundary points:

- Points which have a neighborhood which
 - contains members of X
 - And contains nonmembers of X

Sets and neighborhoods

Boundary points:

- Points which have a neighborhood which
 - contains members of X
 - And contains nonmembers of X

Exterior points wrt X:

 Points which have a neighborhood which soes NOTcontain members of X

Sets and neighborhoods

Exterior points wrt X:

 Points which have a neighborhood which soes NOTcontain members of X

Exterior points wrt X:

• Points which have a neighborhood which soes NOTcontain members of X

The interior of a Set

A set points X

- X is a set
- i(X) the interior of X
- Is the set which contains all of Xs interior points
- $i(X) \subseteq X$

The boundary of a Set

- X is a set
- b(X) the boundary of X
- Is the set which contains all of Xs boundary points
- b(X) contains some points which are not elements of X

The exterior of a Set

- X is a set
- e(X) the exterior of X
- Is the set which contains all of Xs exterior points
- e(X) contains points only which are not elements of X

The closure of a Set

- X is a set
- cl(X) the closure of X
- Is the set which contains all of Xs *interior and boundary* points
- cl(X) contains some points which are not elements of X

Relationships between interior, boundary, closure, and exterior

- $i(X) \subseteq X$
- $i(X) \cap b(X) = \emptyset$
- $cl(X)=i(X) \cup b(X)$
- Let P be the points of the plane and $X \subseteq P$ then we have

$$P = i(X) \cup b(X) \cup e(X)$$

Regular open sets

- A set is *open* iff it contains only *interior points*
- A set is *regular open* iff it is identical to the *interior of its closure*
- $ROX \equiv X = I(cl(X))$

Non-regular open sets

 $P \notin X$

- Let X be a set without the point P
- Let i(X) be the interior of X
- i(X) is open
- i(X) is NOT regular

Regular closed sets

- A set is *closed* iff it contains only *interior* and boundary points
- A set is *regular closed* iff it is identical to the *closure of its interior*
- $RCX \equiv X = cl(i(X))$

Non-regular closed sets

The closure of the interior of X, cl(i(X)), contains only boundary points which are close to its interior

Non-regular closed sets

The closure of the interior of X, cl(i(X)), contains only boundary points which ore close to its interior

The spike remains gone $X \neq cl(i(X))$

X is NOT regular closed

Regular sets are topologically nice and regular – no lower dimensional holes or spikes

Topologies

- A set Z with a system of (regular) open sets
 Z such that
 - $-Z \in \boldsymbol{Z}$
 - $-\varnothing\in Z$
 - -Z is closed under finite (regularized) unions If $X \in Z$ & $Y \in Z$ then $X \cup Y \in Z$
 - Z is closed under arbitrary (regularized) intersections

If
$$U \subseteq Z$$
 then $\bigcap_{Y \in U} \in Z$

Topologies

- A set Z with a system of (regular) closed sets Z such that
 - $-Z \in \boldsymbol{Z}$
 - $-\varnothing\in Z$
 - Z is closed under finite (regularized) intersections

If
$$X \in \mathbb{Z} \& Y \in \mathbb{Z}$$
 then $X \cap Y \in \mathbb{Z}$

-Z is closed under arbitrary (regularized) unions

If
$$U \subseteq Z$$
 then $\bigcup_{Y \in U} \in Z$

Connectedness

- Two sets X and Y are connected iff
 - X intersects the closure of Y or Y intersects the closure of X
 - $-X \cap cl(Y) \neq \emptyset$ or $Y \cap cl(X) \neq \emptyset$
- Important:
 - For connectedness the interiors do NOT need to overlap
 - Connected sets do NOT need to share interior points
- Regular closed sets: connected if they share at least one point of their closures

X is connected to Y

Mereotopology – the formal theory of parthood and connectedness

Need for topology (Varzi)

- Mereological reasoning cannot do justice to the notion of a *whole*
- Distinction between
 - one-piece, self-connected wholes like stone, whistle
 - Scattered entities made up of several disconnected parts like a broken glass, a bikini, a sum of two disjoint cats

cannot be expressed in mereology

Need for topology (2)

- In GEM for any connection of parts there is in principle a complete whole: the mereological sum
- There is no way, within mereology, to draw a distinction between 'good' and 'bad' sums
 - between
 - Integral wholes and
 - Scattered sums of disperate entities

Way out:

- Mereological account must be supplemented with a topological machinery of some sort
- Mereology a *part-of* theory
- Mereotopology is *part-whole* theory
- Add a primitive binary relation Cxy interpreted as
 x is-topologically-connected-to y

Why not using point set topology?

- Point set topology is based on set theory
- If we found our topological theory on sets then we import all philosophical problems of sets:
 - Need for (minimal) elements
 - How can infinitely many non-extended points constitute extended entities?
 - See Barry's 'topological foundations of cognitive science' paper for more arguments

BUT!!

- Using point set topology at the level of models is gooooood!
- Helps us
 - To better understand our theories
 - To find proofs and counter models

Ground topology

Ground mereology - M

- Axioms
 - -M1 P xx
 - -M2 P xy & P yx \Rightarrow x = y
 - -M3 P xy & P yz \Rightarrow P xz
- Defined relations:
 - Overlap
 - Underlap
 - Proper part

Interpretation of ground mereology in a topological space T=(Z, Z)

- P xy is interpreted as $i(X) \subseteq i(Y)$ with X,Y $\in \mathbb{Z}$
- From the interpretation of P it follows that
 O xy holds if and X and Y share at least one
 interior point

Ground topology

- Primitive relation *C xy*
- Interpretation *x* is-connected-to *y*
- If x and y are interpreted of regular closed sets of some topological space then C xy is interpreted as the relation which holds iff the closures of X and Y share at least one point

• C1: C is reflexive C xx

• C1: C is reflexive

C xx

• C2: C is symmetric

 $C xy \Rightarrow C yx$

Axioms of ground topology

• C1: C is reflexive

C xx

• C2: C is symmetric

 $C xy \Rightarrow C yx$

• C1: C is reflexive

C xx

• C2: C is symmetric

$$C xy \Rightarrow C yx$$

Axioms of ground topology

• C1: C is reflexive

C xx

• C2: C is symmetric

$$C xy \Rightarrow C yx$$

• C3: relation between P and C if x is a part of y then everything that is connected to x is also connected to y

$$P xy \Rightarrow (z)(C zx \Rightarrow C zy)$$

The RCC8-relations

DC $xy \equiv \neg C xy$

DC xy

EC $xy \equiv C xy \& \neg O xy$

EC xy

The RCC8-relations

 $PO xy \equiv O xy \& \equiv \neg P xy \& \equiv \neg P xy$

PO xy

TPP $xy \equiv PP xy \& (\exists z)(EC zx \& EC zy)$

TPP xy

The RCC8-relations

TPPi xy

TPPi $xy \equiv PP xy \& (\exists z)(EC zx \& EC zy)$

NTPPi
$$xy \equiv PP xy \& \neg(\exists z)(EC zx \& EC zy)$$

NTPPi xy

NTPP
$$xy \equiv PP xy \& \neg(\exists z)(EC zx \& EC zy)$$

NTPP xy

Assignments

Prove the following theorems

- 1. DC, EC, PO are symmetric e.g., DC $xy \Rightarrow DC yx$
- 2. (N)TPP and (N)TPPi are asymmetric e.g., TPP $xy \Rightarrow \neg$ TPPi xy

The RCC8 lattice

10 COBN ET AL

Figure $\rlap{\ \ \angle\ }$ A subsumption lattice of dyadic relations defined in terms of C

0. $P xy \Rightarrow (z)(C zx \Rightarrow C zy)$	C3
1. O xy	ass
2. $(\exists z)(P zx \& P zy)$	1 D _O
3. P zx & P zy	
4. P zx	3 simp
5. $(u)(C uz \Rightarrow C ux)$	4,0 MP
6. $C yz \Rightarrow C yx$	5 UI
7. P zy	3 simp
8. $(u)(C uz \Rightarrow C uy)$	7,0 MP
9. $C zz \Rightarrow C zy$	8 UI
10. C zy	9, C1 MP
11. C yz	10, C2 MI
12. C yx	11, 6 MP
13. C xy	12, C2 MI
14. $O xy \Rightarrow C xy$	1-13 CP

More assignments

- Prove the following theorems
 - $PO xy \Rightarrow O xy$
 - ¬(PO xy & NTPP xy)
 - DC xy \Rightarrow DR xy
 - EC xy \Rightarrow DR xy
 - ¬(EC xy & DC xy)

using their definitions and C1-C3

Summary

Weak atomicity and atomicity

- Weak atomicity
 - There are atoms through not everything needs to have a complete atomic decomposition
 - -AT0 ($\exists x$) Ax
 - AT0 ensures that there is at least one atom
- Atomicity
 - every entity has an atom as part
 - AT1: (∃y)(Ay & P yx)

Atomic essentialism (AT2)

- Comes in two equivalent versions
 - AT2(a): ¬P xy ⇒(∃z)(A z & P zx & ¬P zy) (Atomic version of SSP)

$$\neg P xy \Rightarrow (\exists z)(P zx \& \neg O zy) (SSP)$$

- -AT2(b): $(z)(Az \Rightarrow (Pzx \Rightarrow Pzy)) \Rightarrow Pxy$
- Assignment:
 - prove the equivalence of AT2(a) and AT2(b)
 - prove that AT2 implies SSP, I.e., M+AT2 |- SSP

Relations between AT0,AT1,AT2

Masolo & Vieu 01

Point set topology

Neighborhoods of points

- Assume the set of points or the Euclidian plane
- A neighborhood of a Point P is a disk of radius v with center P

Sets and neighborhoods

A set points X

Classification of points with respect to X

- Interior points wrt. X:
 - Points which have a neighborhood which contains only members of X

Sets and neighborhoods

Boundary points wrt. X:

- Points which have a neighborhood which
 - contains members of X
 - And contains nonmembers of X

Sets and neighborhoods

Exterior points wrt X:

 Points which have a neighborhood which soes NOTcontain members of X

The interior of a Set

- X is a set
- i(X) the interior of X
- Is the set which contains all of Xs interior points
- $i(X) \subseteq X$

The boundary of a Set

- X is a set
- b(X) the boundary of X
- Is the set which contains all of Xs boundary points
- b(X) contains some points which are not elements of X

The exterior of a Set

- X is a set
- e(X) the exterior of X
- Is the set which contains all of Xs exterior points
- e(X) contains points only which are not elements of X

The closure of a Set

- X is a set
- cl(X) the closure of X
- Is the set which contains all of Xs *interior and boundary* points
- cl(X) contains some points which are not elements of X

Relationships between interior, boundary, closure, and exterior

- $i(X) \subseteq X$
- $i(X) \cap b(X) = \emptyset$
- $cl(X)=i(X) \cup b(X)$
- Let P be the points of the plane and $X \subseteq P$ then we have

$$P = i(X) \cup b(X) \cup e(X)$$

Regular open sets

- A set is *open* iff it contains only *interior points*
- A set is *regular open* iff it is identical to the *interior of its closure*
- $ROX \equiv X = I(cl(X))$

Regular closed sets

- A set is *closed* iff it contains only *interior* and boundary points
- A set is *regular closed* iff it is identical to the *closure of its interior*
- $RCX \equiv X = cl(i(X))$

Topologies

- A set Z with a system of (regular) closed sets Z such that
 - $-Z \in Z$
 - $-\varnothing\in Z$
 - Z is closed under finite (regularized) intersections

If
$$X \in \mathbb{Z} \& Y \in \mathbb{Z}$$
 then $X \cap Y \in \mathbb{Z}$

-Z is closed under arbitrary (regularized) unions

If
$$U \subseteq Z$$
 then $\bigcup_{Y \in U} \in Z$

Connectedness

- Two sets X and Y are connected iff
 - X intersects the closure of Y or Y intersects the closure of X
 - $-X \cap cl(Y) \neq \emptyset$ or $Y \cap cl(X) \neq \emptyset$
- Important:
 - For connectedness the interiors do NOT need to overlap
 - Connected sets do NOT need to share interior points
- Regular closed sets: connected if they share at least one point of their closures

• C1: C is reflexive

C xx

• C2: C is symmetric

$$C xy \Rightarrow C yx$$

• C3: relation between P and C if x is a part of y then everything that is connected to x is also connected to y

$$P xy \Rightarrow (z)(C zx \Rightarrow C zy)$$

The RCC8-relations

Assignments

Prove the following theorems

- 1. DC, EC, PO are symmetric e.g., DC $xy \Rightarrow DC yx$
- 2. (N)TPP and (N)TPPi are asymmetric e.g., TPP $xy \Rightarrow \neg$ TPPi xy
- 3. Prove the following theorems
 - $PO xy \Rightarrow O xy$
 - (PO xy & NTPP xy)
 - DC $xy \Rightarrow DR xy$
 - $EC xy \Rightarrow DR xy$
 - (EC xy & DC xy)

using their definitions and C1-C3