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“Although there has always been a temptation in
KR to set the sights either too low (and provide
only a data structuring facility with little or no
inference) or too high (and provide a full theorem
proving facility), this paper argues for the rich
world of representation that lies between these two
extremes.”

Levesque and Brachman (1985)

1 Introduction

Time and space belong to those few fundamental concepts that always puzzled
scholars from almost all scientific disciplines, gave endless themes to science
fiction writers, and were of vital concern to our everyday life and commonsense
reasoning. So whatever approach to AI one takes [Russell and Norvig, 1995],
temporal and spatial representation and reasoning will always be among its
most important ingredients (cf. [Hayes, 1985]).

Knowledge representation (KR) has been quite successful in dealing sepa-
rately with both time and space. The spectrum of formalisms in use ranges from
relatively simple temporal and spatial databases, in which data are indexed by
temporal and/or spatial parameters (see e.g. [Srefik, 1995; Worboys, 1995]),
to much more sophisticated numerical methods developed in computational ge-
ometry (see e.g. [Preparata and Shamos, 1985]) and various qualitative logical
theories (see [Stock, 1997; Casati and Varzi, 1999; Cohn and Hazarika, 2001]
and references therein). However, despite the modern view of space and time
as space-time (not only in physics, but in Al as well!), apart from approaches

L «Events happen in time, but also in space—they have a where as well as a when. They are
four-dimensional spatiotemporal entities” [Hayes, 1985]. “The spatial data models currently
used as the foundation for geographical information systems (GISs) fall short of conveying the
rich and complex ways in which phenomena change over space and time. One of the major
limitations of today’s systems, for example, is that they capture only a snapshot of reality,
reliant as they are on databases that contain only current data” [Hornsby and Egenhofer,
2000].



based on classical quantitative models of kinematics (see e.g. [Rajagopalan
and Kuipers, 1994; Hays, 1989]), surprisingly little has been done to design
qualitative spatio-temporal representation formalisms [Vieu, 1991; Galton, 1997;
Muller, 1998; Hornsby and Egenhofer, 2000; Wolter and Zakharyaschev, 2000b],
let alone implementations.

Although a deep ontological analysis of qualitative spatio-temporal entities
seems still missing [Vieu, 1997], yet there is a quite simple ‘naive’ approach to
constructing such formalisms. Just take your favorite temporal logic T' and your
favorite spatial logic S, and merge them into a single spatio-temporal hybrid,
allowing the desirable amount of interaction between space and time. The con-
struction can be driven either by syntactical or by semantical considerations. In
the former case, one joins the axioms of 7" and S together with some interacting
principles (cf. [Muller, 1998]). The next step would be to supply the result-
ing system with an intended interpretation—to demonstrate which aspects of
our intuitive views on space are captured by the theory—and show that they
match (i.e., prove soundness and completeness). The example of RCC [Randell
et al., 1992] (as well as general results on multi-dimensional logics [Gabbay et
al., 2001]) shows, however, that this can be a hard mathematical problem (see
[Gotts, 1996a; Stell, 2000)).

By taking the semantical way—which will be done in this paper—we first in-
tegrate the intended models of 7" and S into a multi-dimensional spatio-temporal
structure (as e.g. in Fig. 1), and then combine their languages into a ‘super-
language’ which is capable of speaking about these structures (see e.g. [Wolter
and Zakharyaschev, 2000b]). It may be very difficult (if at all possible) to write
down axioms for such a system, but for most KR purposes this should not be
an obstacle, provided that the interpretation is transparent and convincing, and
the system can be supplied with a reasoning procedure.
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Figure 1: Spatial regions moving in time.
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Our intended models of space are a variant of mereotopological models: the
primitive entities—regions—are interpreted as regular closed sets of topologi-
cal spaces [Grzegorczyk, 1960; Gotts, 1996b] so that any two regions can stand
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in precisely one of the eight relations depicted in Fig. 2 [Egenhofer and Fran-
zosa, 1991; Randell et al., 1992]. As concerns time, we consider three fun-
damental paradigms: linear point-based time (discrete, dense, etc.), branch-
ing point-based time, and linear interval-based time (see e.g. [Allen, 1983;
Gabbay et al., 1994; van Benthem, 1996; Gabbay et al., 2000]). The spatial
dimension (topological space) is supposed to be always the same, however re-
gions can change their positions with time passing by (see Fig. 1). Thus, our
spatio-temporal interpretations can be regarded as the Cartesian products of
spatial and temporal structures.
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DC(X,Y) TPP(X,Y) TPPi(X,Y)
PO(X,Y) EQ(X,Y) NTPP(X,Y) NTPPi(X,Y)

Figure 2: The eight relations between regions.

Having fixed the intended spatio-temporal structures, we still have a rich
choice of spatial and temporal languages, in which we can speak about these
structures, and a variety of ways to combine the languages. Here we come to
the main issue of this paper: to investigate computational properties of spatio-
temporal logics. Our concern is to find out which constructors of the languages
and which kinds of interaction between them cause a ‘bad computational be-
havior’ and which result in ‘implementable’ spatio-temporal formalisms.

A very important point here is that in this multi-dimensional case the ‘fun-
damental tradeoff’ is not only between rich first- or higher-order theories on
the one hand, and their less expressive (e.g., propositional) fragments on the
other, say, between the full region connection calculus RCC [Randell et al., 1992],
which is undecidable [Gotts, 1996b; Dornheim, 1998], and its propositional frag-
ment RCC-8 which is decidable [Bennett, 1994] (in fact, NP-complete [Renz and
Nebel, 1999]). An interaction between dimensions or, at the syntactical level,
between connectives of the spatial and temporal languages can dramatically
‘spoil’ nice computational properties of the components. The following simple
example can serve as a good illustration.

Example 1. Consider the compass logic of [Venema, 1990] which can be viewed
as a sort of ‘orientation logic’ on the plane. The intended model is the 'map’
N x N with the standard orientation; see Fig. 3 (in fact, we can take any in-
finite grid, say, R x R). There are two compass operators < x and &g on the



Figure 3: Compass relations.

map, which are interpreted as ‘somewhere to the North’ and ‘somewhere to the
East,” respectively (of course, one can add their converses ‘somewhere to the
South’ and ‘somewhere to the West’ as well), plus we can use the standard
Boolean connectives. That Moscow is located to the North-East of London can
be expressed in the compass logic by the formula

London — &N pMoscow,

where London and Moscow are treated as propositional variables that are either
true or false at every point of the map.

This two-dimensional logic can be regarded as a natural combination of two
one-dimensional ‘compass logics’ interpreted on straight lines. The interaction
between the dimensions is reflected by the formulas

<>N<>E<P A xd <>E<>N<Pa
OEDN(P — DNOE(Pa

where Oy stands for ‘everywhere to the North. The meaning of these formulas
is explained by the diagrams in Fig. 4 which say: if there are two black arrows
on the map then there are two dashed arrows as well.

Now, the satisfiability problem for the 1D logics is known to be decidable
in NP [Ono and Nakamura, 1980], while the satisfiability problem for the 2D
compass logic on Nx N or Rx R is not even recursively enumerable [Spaan, 1993;
Marx and Reynolds, 1999; Reynolds and Zakharyaschev, 2001].

Where is the border line between an ‘acceptable’ and ‘unacceptable’ com-
putational behavior of KR formalisms? Obviously, the compass logic above is
not acceptable from the computational point of view: no algorithm is capable
of even enumerating the formulas satisfiable on the map. On the other hand,
its one-dimensional fragments are often also regarded as non-tractable [Garey
and Johnson, 1979] in view of their NP-hardness. Yet, there is an evidence of
Horrocks [1998] who demonstrated that “some of the very expressive descrip-
tion logics for which tableaux algorithms are now available may also be usable
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Figure 4: Commutativity and Church—Rosser properties.

in realistic applications.” Here and in [Horrocks et al., 1999] ‘very expressive’
means PSPACE-hard and EXPTIME-hard, respectively. Hustadt and Schmidt
[2000] successfully used a full first-order prover for dealing with EXPTIME-
complete modal logics. And MONA (see [Klarlund et al., 2000] and references
therein) is a good example of an implementation of decision procedures for the-
ories with a non-elementary worst-case complexity.? A possible explanation of
this phenomenon is that “in all practically occurring situations the worst case
never seems to happen. The reason is that definitions occurring in practice
are somehow well-structured. ... and this does not only hold for knowledge
representation systems based on description logic but also for object-oriented
database systems” [Nebel, 1996].

Of course, only experiments can show whether this or that KR formalism
can be applied in practice. In this paper, however, we suggest to qualify a logic
as having an acceptable computational behavior if it is

e decidable and
e supported by a potentially implementable decision algorithm.

The organization of the paper is very simple. In Sections 2 and 3 we intro-
duce the spatial and temporal components of the spatio-temporal logics to be
constructed in Section 4. We define both the syntax and the intended semantics
of the logics, illustrate their expressive power by multiple examples, and focus
attention on their computational behavior. It is to be noted from the very be-
ginning that we are not putting forward a novel spatio-temporal paradigm. Nor
are we designing the spatio-temporal KR formalism suitable for all potential
applications in GISs, computer vision, robotics, image retrieval, etc. Our aim
is more modest: we combine (some of) the existing spatial and temporal logics
and analyze the computational behavior of the resulting hierarchy of spatio-
temporal hybrids. As the field of spatio-temporal representation and reasoning
is still at the ‘embryo’ stage, the paper contains a considerable number of open
problems.

Although all technical proofs are omitted, we nevertheless try to give the
reader the underlying ideas in the hope of sharing our excitement about this
interesting and promising field of KR based on multiple connections to geometry,
algebra, topology, modal and temporal logics, and other disciplines.

2«Perhaps surprisingly, this complexity also contributes to successful applications, since it
is provably linked to the succinctness of the logics” [Klarlund et al., 2000].



2 Of space

There are different approaches to qualitative spatial representation in AI (com-
prehensive surveys can be found in [Vieu, 1997; Casati and Varzi, 1999; Cohn
and Hazarika, 2001]). Here we consider only one, perhaps the most influential
of them, which takes extended regions of space as the primitive spatial entity.
Properties of regions are usually defined by first-order axiomatic theories (see
e.g. [Clarke, 1981; Randell et al., 1992]) the (explicit or implicit) intended
models of which are topological, in particular, Euclidean spaces.

2.1 Topological spaces

Definition 2 (topological space). A topological space is a pair ¥ = (U, I) in
which U is a non-empty set, the universe of the space, and I is the interior
operator on U satisfying the following Kuratowski azioms: for all X, Y C U,

[(XNY)=IXNIY, IXCILX, IX CX, IU=U.

The operator dual to I is called the closure operator and denoted by C; thus,
for every X CU,CX =U —I(U - X) (or CX = -1 — X, for short). A set
X CU is called open if X =1X (IX is known as the interior of X) and closed
if X = CX (CX is the closure of X). The set CX —1X is called the boundary
of X.

In this paper, we will need only two kinds of topological spaces.

Example 3 (Euclidean spaces). Let X be a set of real numbers, i.e, X C R.
A point z € R is said to be interior in X if there is some ¢ > 0 such that the
whole open interval (z — €,z + €) belongs to X. The interior IX of X is defined
then as the set of all interior points in X. It is not hard to check that (R, I) is
a topological space; it is called the one-dimensional Euclidean space. Open sets
in (R, I) are (possibly infinite) unions of open intervals (a,b), where a < b. The
closure of (a,b), for a < b, is the closed interval [a, b], with the end points a and
b being its boundary. In the same manner one can define higher-dimensional
FEuclidean spaces based the universes R” for n > 1 (in the definition of interior
points z one should take n-dimensional e-neighborhoods of x).

There can be different views on what sets of a topological space ¥ = (U, T)
can be taken as interpretations of spatial regions (for a discussion consult [Vieu,
1997; Gotts, 1996al).? Following [Gotts, 1996a], we interpret regions only as
reqular closed sets, i.e., sets X such that X = CIX (an alternative would be to
take regular open sets X for which X = ICX). For example, the circle

C(a,r) = {(x1,22) € R? : \/(acl —a1)?+ (2 —az)? < r}

with center a = (a1, a2) and of radius r > 0 on the Euclidean plane is a regular
closed set, while the balloon obtained by attaching to C(a,r) a thread (e.g.
a segment of a straight line) is not regular closed, because the interior of the
thread in R? is empty.

3 Actually, the choice is determined by the way of characterizing a relation of connection
between two regions. Our interpretation reflects the following definition: regions X and Y
are connected iff CX N CY # @. For a comparison of different definitions consult [Cohn and
Varzi, 1998].

Who was the
first?



An important property of topological spaces is that any, even infinite, union
(intersection) of open (closed) sets is open (respectively, closed). An infinite
union (intersection) of closed (open) sets is not necessarily closed (open). For
example, in R we have:

oo o0

Ul/n,1-1/n] = (0.1), ([=1/n,1/n] = {0}. (1)

n=1 n=1

Example 4 (Kripke spaces). Recall that a quasi-order is a pair = (V, S),
where S is a reflexive and transitive binary relation on V # (). With every
quasi-order & one can associate a topological space Ts = (V, 1) by taking, for
every X CV,

IeX={reX:VyeV (zSy »ye X))} (2)

We call T the Kripke space determined by & (the reason for this name will be
explained in Section 2.2.4; these spaces are also known as Alexandrov spaces).
The closure operator Cg on T is defined then by

CoX ={yeV:3zxe X ySz}. (3)

It follows from (2) and (3) that arbitrary unions (intersections) of closed (open)
sets of Kripke spaces are closed (respectively, open).

It is not hard to see that, for any two regions X and Y in a topological space
% = (U,I), one and only one of the following eight relations can hold between
X and Y (see Fig. 2):

( ) if -drzeXnY,
EQ(X,Y) iff Ve(zeXeoaxzeY),

( ) iff Jz(zelXNIY)ATz (2 €IXN-Y)ATz (z € — X NIY),
EC(X,Y) iff Jz(zeXNY)A-TJz (zelXNIY),
TPP(X,Y) iff Vz(ze-XUY)ATx(zeXN-IY)A3z (z€-XNY),
TPPI(X,Y) iff TPP(Y,X),
NTPP(X,Y) iff Vo (z€ —XUIY)Adz (zx€ -XNY),
NTPPi(X,Y) iff NTPP(Y,X).

In English, these relations can be described as Disconnection, Equality, Partial
Overlap, External Connection, Tangential Proper Part, Non-Tangential Proper
Part, and the inverses of the last two.

In view of this property of being jointly exhaustive and pairwise disjoint, the
eight relations above play a fundamental role in spatial representation and rea-
soning (the same as Allen’s 13 relations between time intervals; see Section 3.4).
We will call them the basic relations or the RCC-8 relations (or predicates).

2.2 Spatial logics

Languages of different expressive power can be used to talk about regions in
topological spaces.



DC(X,Y) = -C(X,Y)
P(X.Y) = VZ(C(Z.X)— C(Z,Y))

EQ(X,Y) = P(X,Y)AP(Y,X)
0(X,Y) = 3Z (P(Z,X)AP(Z.Y))
PO(X,Y) = O(X,Y)A-P(X,Y)A-P(Y,X)

EC(X,Y) = C(X,Y)A-O(X,Y)

PP(X,Y) = P(X,Y)A-P(Y,X)
TPP(X,Y) = PP(X,Y)A3Z (EC(Z,X)ANEC(Z,Y))
NTPP(X,Y) = PP(X,Y)A-3Z (EC(Z,X)AEC(Z,Y))

Table 1: Some relations between spatial regions, defined in terms of C.

2.2.1 First-order logics

Often, logical formalisms for qualitative spatial representation are formulated
as first-order theories [Whitehead, 1929; Clarke, 1981; Randell et al., 1992;
Casati and Varzi, 1999]. For instance, the language of RCC consists of indi-
vidual variables X,Y,... (understood as variables over regions), the individual
constant U (for the universal region), the binary predicate C(X,Y) (read as
‘X connects with Y’), a number of functions such as sum(X,Y"), compl(X),
prod(X,Y"), the Boolean logical connectives, and the quantifiers V and 3. The
eight basic predicates are defined via C as in Table 1 (where P stands for ‘part,’
O for ‘overlaps,” and PP for ‘proper part’), and the axioms of RCC include, in
particular,

VX C(X,X),

VX,V (C(X,Y) — C(Y, X)),

VX C(X,U),

VX3V NTPP(Y, X),

VXY, Z (C(Z,sum(X,Y)) & C(Z,X) vV C(Z,Y)).

Unfortunately, from the computational point of view, full RCC turns out to be
too expressive: as was shown in [Gotts, 1996b; Dornheim, 1998] (and actually
follows from [Grzegorczyk, 1951)), it is undecidable. Another problem with RCC
is its semantical characterization. For example, it is an open question whether
RCC is sound and complete with respect to topological interpretations.

Of course, one can change direction and start from semantics. If we are
satisfied with the mereotopological model for qualitative spatial representation,
then we can use as a variant of spatial logic the set of all first-order formulas
in a proper signature, say, containing the eight basic predicates in Fig. 2, that
hold in all topological models defined as follows (cf. [Dornheim, 1998]):

Definition 5 (topological model). A topological model is a structure of the
form

S = <R(S); DCY, EQY, PO, ECH, TPPE, TPPIT, NTPP?, NTPPiT>, (4)

Is it so?



where T is a topological space, R(¥) the set of all regular closed subsets in
T, and DCY, EQ®, PO®, ECT, TPPE, TPPi?, NTPPT, NTPPi? are the basic
predicates on R(%) defined as above.

Let a be an assignment in & associating with every region variable X a set
a(X) in R(%). A first-order formula ¢(X, ..., X,) in the signature of the RCC-
8 predicates and with free variables X1, ..., X, is satisfiedin & under a (& =* ¢
in symbols) if & = p[a(X1),...,a(X,)] in the standard model-theoretic sense.

Unfortunately, even this simplified approach turns out to be computationally
unacceptable: as follows from [Grzegorczyk, 1951], this logic is undecidable as
well. (Booleans expressible via C.)

2.2.2 RCC-8

As the eight basic region-relations play so important role in spatial representa-
tion and reasoning [Egenhofer and Franzosa, 1991; Egenhofer, 1991; Smith and
Park, 1992], to obtain a computationally well-behaved spatial formalism, we
can sacrifice quantification and consider the quantifier-free fragment of the logic
of topological models defined above. This fragment is known as RCC-8. Thus,
RCC-8 formulas are simply Boolean combinations of the RCC-8 predicates.

Definition 6 (consequence). Say that an RCC-8 formula ¢ is a consequence
of a set ¥ of RCC-8 formulas if for every topological model & and every as-
signment a in it, we have & =% ¢ whenever & = £. In this case we write

Y E .

For example, using the language of RCC-8 we can compose spatial knowledge
bases like

EC(Catalunya, France),

TPP(Catalunya, Spain) V NTPP( Catalunya, Spain),
DC(Spain, France) V EC(Spain, France),
NTPP(Paris, France).

The formulas EC(Spain, France), TPP(Catalunya, Spain), and DC(Spain, Paris)
are then consequences of this knowledge base.

It should be clear that ¥ |= ¢ holds iff the formula ~p A A X is not satisfiable
in topological models. Thus, to understand the computational properties of
RCC-8, we can confine ourselves to considering only the satisfiability problem.

That this problem is decidable was first observed by Bennett [1994] who
encoded RCC-8 into a decidable propositional modal logic. And later Renz
and Nebel [1999] showed that the satisfiability problem for RCC-8 formulas is
NP-complete. For more details see Section 2.2.4.

2.2.3 BRCC-8

One apparent ‘deficit’ of RCC-8 is that it operates only with atomic regions. We
can’t form unions (L) or intersections (M) of regions to say, for instance, that

EQ(EU, Spain U Italy Ll ...)

Check!!. What
about axioma-
tizability?



(‘the EU consists of Spain, Italy, etc.’),
P(Alps, Italy U France Ll ...)
(‘the Alps are located in Italy, France, etc.’),
EC(Austria, Alps N Italy)

(‘Austria is externally connected to the alpine part of Italy’), and deduce from
these that if EC(X, EU), for some country X, then EC(X,Y") for some country
Y in the EU, or that there is a country Z such that TPP(Z, EU) (i.e., ‘Z is
a tangential proper part of the EU’). Note by the way that the last formula
is a correct conclusion only if we interpret our formulas in Euclidean (or, more
generally, connected?®) topological spaces (and if there are non-EU countries): in
a discrete topological space (where all sets are open) the EU may be an open set
with empty boundary. This simple observation and the result of [Renz, 1998],
according to which every satisfiable RCC-8 formula is satisfiable in all Euclidean
spaces R", n > 1, show that the Boolean operations on region terms indeed
increase the expressive power of RCC-8.

Definition 7 (boolean region term). A Boolean region term is just a com-
bination of region variables using the Boolean operators LI, M, and —.

Denote by BRCC-8 the extension of RCC-8 which allows the use of Boolean
region terms as arguments of the RCC-8 predicates. As the Boolean operators
do not in general preserve the property of being regular closed, we have to adjust
the interpretation of Boolean region terms in a topological model & of the form
(4) by taking, for region terms ¢ and ¢,

a(tut) = Cl(a(t)Ua(t)) =a(t)Ua(t,
a(tnt') = Cl(a(t)Nna(t)),
a(-t) = CI(U — a(t)).

Thus, every region term is interpreted as a regular closed set of ¥. Note that
a(XM=X) =0 and a(X U~-X) = U for any a and . We denote the region
terms X M—X and X=X by L and T, respectively. The constraint -EQ(X, 1)
asserts that X is a non-empty region.

The computational behavior of BCCR-8 in arbitrary topological models is
precisely the same as that of RCC-8. However, if only Euclidean topological
models are regarded as possible interpretations, the satisfiability problem for
BCCR-8 formulas becomes PSPACE-complete (for details consult [Wolter and
Zakharyaschev, 2000a]).

2.2.4 Modal logics as spatial logics

The proof of the decidability of RCC-8 in [Bennett, 1994] brought in sight an-
other kind of formalism which can be used as a spatial logic. In fact, the logic
was introduced independently by Orlov [1928], Lewis in [?], and Godel [1933]
without any intention to reason about space. Lewis baptized the logic as S4

4 A topological space is called connected if it can’t be represented as a union of two disjoint
open sets.
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and understood it as a logic of necessity and possibility, that is as a modal logic.
Besides the Boolean connectives and propositional variables, its language con-
tains two modal operators O (‘it is necessary;’ Orlov and Godel treated O as
‘it is provable’) and < (‘it is possible’). The axiom shemata of S4 are those of
classical propositional calculus, three modal schemata:

O(p = ) = (Op — O¢), Op — ¢, Op— O0p,

and two inference rules: modus ponens and necessitation ¢/O¢. The possibility
operator is defined as dual to O, i.e., O = 0.

In the late thirties and early forties several logicians [Stone, 1937; Tarski,
1938; Tsao-Chen, 1938; McKinsey, 1941] noticed that S4 can be interpreted in
topological spaces. Actually, there is a striking similarity between the axioms
of S4 and Kuratowski’s axioms for the interior operator. (The first schema and
rule of necessitation can be replaced with O(p A ¢) < (Op A Ot) and OT,
corresponding to the first and the last topological axioms.)

Suppose that an assignment v in a topological space ¥ = (U,I) is a map
from the set of propositional variables in S4 to 2V. We then inductively extend
v to all modal formulas by interpreting O as I, < as C, A as N, and = as —. Now
we say that a modal formula ¢ is satisfied in ¥ under v if v(p) # 0; ¢ is valid in
T (T | ¢, in symbols) if v(y) = U. It turns out that S4 is sound and complete
with respect to this interpretation: a modal formula ¢ is derivable in S4 iff ¢ is
valid in all topological spaces iff ¢ is valid in any n-dimensional Euclidean space
(n > 1) [McKinsey, 1941; McKinsey and Tarski, 1944]. A remarkable result due
to Dummett and Lemmon [1959] and Kripke [1963] is that S4 is complete with
respect to finite Kripke spaces (Kripke used quasi-orders to define his possible
world semantics for 54).

Thus, S4 can be regarded as a ‘logic of topological spaces.” We can increase
the expressive power of S4 by adding to it one more pair of modal operators
and <, known as the universal modalities. The topological meaning of [ and &
is ‘for all points in the space’ and ‘for some point in the space,’ respectively. More
precisely, for every formula ¢ in the extended language and every topological
space ¥ = (U,I) with an assignment v, we have:

U(@:{ U ifo(g) =U, U(@(p):{ U ifo(y) £ 0,

(0  otherwise; ¢ otherwise.

The set of all formulas in this language that are valid in all topological spaces
is denoted by S4,; it can be axiomatized by adding to S4 the schemata

Cp = OCp and [y — Op.

According to [Goranko and Passy, 1992], S4,, is also complete with respect to
finite Kripke spaces. Note, however, that in constrast to S4 itself, S4, is not
complete with respect to Euclidean spaces. The set of formulas valid in all
Euclidean spaces is strictly larger than S4,. It was axiomatized in [Shehtman,
1999] by adding to S4, the schemata M(Op V O—p) — Hp V F=p.

5This story is really amazing. In 1908, Brouwer introduced intuitionistic logic Int; later he
became also famous in topology. Orlov and Gddel defined S4 in order to interpret intuitionistic
logic in classical one. Open sets in a topological space form a complete Heyting algebra,
which is a model of Int, and can be used as a model of RCC [Stell and Worboys, 1979;
Stell, 2000].

11



S4, is expressive enough to encode the topological meaning of the RCC-8
predicates and that of Boolean region terms.® Indeed, let us denote the box
and the diamond of S4 by, respectively, I and C (to emphasize their topological
interpretation as the interior and closure operators). For a Boolean region term
t, define inductively a modal formula ¢* by taking:

X} = ClIp;, (X; is a region variable, p; a propositional variable),
(t1 Mt2)* = CI(t] NT3),
(t1 Mt2)" = CI(t] V13),
(=t)* = CI-t*.

Then, with every atomic BRCC-8 formula P(s,t) we associate a modal formula
(P(s,t))* defined by:

(DC(s,1))* = =@ (s* A tY),
(EQ(s, 1)* = B (s* ¢ ),
(PO(s,1))* = ©(Is* AIt*) A O (Is* A—t*) A ©(=s* AItY),
(EC(s,8))* = ©(s* At*) A~ (Is* A Tt"),
(TPP(s,t))* = ©(=s* Vt*) A D (s* A C—t*) A (=5 A tY),

(NTPP(s,t))* = [ (=s* V It*) A ©(=s* At*).

Finally, given a BRCC-8 formula ¢, denote by ¢* the result of replacing all
occurrences of atomic formulas P(s,t) in ¢ by (P(s,t))*.

Since the definition of the translation -* mimics the definition of the RCC-8
predicates and since the formula CIC Iy <+ CIy is provable in S4, we imme-
diately obtain the following theorem the original RCC-8 version of which is due
to [Bennett, 1994] (see also [Wolter and Zakharyaschev, 2000a]):

Theorem 8. For every BRCC-8 formula @, the following conditions are equiv-
alent:

(i) ¢ is satisfiable in a topological model;

(ii) ¢* is satisfiable in a topological space;

(iil) ¢* s satisfiable in a finite Kripke space.

As a consequence we have:

Corollary 9. The satisfiability problem for BRCC-8 formulas is decidable.

*

The modal translation ¢* of a BRCC-8 formula ¢ has a rather special form.
Renz [1998] used this form to show that satisfiable RCC-8 formulas can be
satisfied in very simple Kripke spaces, namely in those determined by quasi-
orders we call quasisaws.

A quasisaw is a partial order & = (W, R) every point in which has at most
two successors, with these successors being R-incomparable. An example of a
quasisaw is shown in Fig. 5. It should be clear that if an S4,-formula is satisfied
in a quasisaw then it is satisfied in a disjoint union of forks (defined in Fig. 5)
as well. The following generalization of Renz’s result was proved in [Wolter and
Zakharyaschev, 2000a].

SRecently, the expressive power of the language of S4, has been characterized in terms of
bisimulations by Aiello and van Benthem [2000]. The associated topo-games have been used
in [Aiello, 2001] to measure a difference between spatial regions.
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Figure 5: Quasisaw.

Theorem 10. A BRCC-8 formula ¢ is satisfiable iff ©* is satisfiable in the
Kripke space determined by a quasisaw containing < £(¢*) forks, where £(p*)
is the length of p*.

Thus, the satisfiability problem for BRCC-8 formulas ¢ in topological models
reduces to the satisfiability problem for their modal translations ¢* in quasisaws
which are disjoint unions of forks. We can make one step further by observing
that the latter problem can be reduced to the satisfiability of first-order formulas
with a single variable. The idea behind this reduction is to represent every
subformula 7 of ¢* by means of three first-order formulas v°, 1!, 1" which
encode the ‘behavior’ of v at the three points of a fork. More precisely, we
define inductively three translations -, -/, and -” by taking

p' = Pi(z), p a propositional variable, for i € {b,1,r},
(Wox) =vtox’, forie€ {b,l,r} and o € {A,V},
(=)t = =t for i € {b,1,7},
(Ip)" = 4" Ny AYT,
(Iy)" =", fori € {l,r},
(H)' =Va (* At AyT), for i € {b,r,1}.

Finally, we define the translation ¢t of a BRCC-8 formula ¢ into the one-variable
fragment of first-order logic as (¢*)°. Tt should be clear that the length of ¢! is
polynomial in the length of .

Theorem 11. A BRCC-8 formula ¢ is satisfiable in a topological model iff ot
is a satisfiable first-order formula.

As is well-known, the satisfiability problem for first-order formulas with one
variable is NP-complete (the one-variable fragment of first-order logic is a no-
tational variant of the propositional modal logic S5). As a consequence, we
immediately obtain the following generalization of a result of [Renz and Nebel,
1999]:

Theorem 12. The satisfiability problem for BRCC-8 formulas in topological
models is NP-complete.

(Remember that satisfiability of BRCC-8 formulas in connected topological spaces
is PSPACE-complete.)
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3 Of time

Let us now turn to semantical structures representing time and languages de-
signed for speaking about these structures.

Definition 13 (flow of time). By a flow of time we mean any strict partial
order § = (W, <), where W is a non-empty set of time points and < a (transitive
and irreflexive) precedence relation on W.

Depending on applications, one can distinguish between various kinds of
flows of time. For example, a linear discrete flow like (N, <) can represent ticks
of the computer clock or years AD. A linear dense flow like (Q, <) or (R, <)
reflects the continuity of time. A branching flow (W, <), where < is a tree
order on W (for a precise definition see Section 3.2) suggests that the future is
non-deterministic, while the past is determined. For more discussions consult
[Gabbay et al., 1994, 2000].

3.1 Linear time

As in the case of space, we can choose between different languages to speak
about flows of time.

3.1.1 First-order logic

First, we can take the first-order language £< with one binary predicate <,
interpreted by the precedence relation of a given flow of time § = (W, <), an
infinite list Py, Pi,... of unary predicates for expressing properties of the time
points, and individual variables xg, 1, ... ranging over these points. Formulas
of L= are built from atoms of the form P;(z;) and z; < z,, by means of the
Booleans A and —, and the first-order quantifiers Vz; and Jz;.

The language £< and its relation to automata has been thoroughly inves-
tigated [Biichi, 1962; Gurevich, 1964; Liuchli and Leonard, 1966; Stockmeyer,
1974; Meyer, 1975; Burgess and Gurevich, 1985]. In particular, the following
results have been obtained:

Theorem 14. The satisfiability problem for L=-formulas is decidable in the
following classes of flows of time: all strict linear orders, {({R,<)}, {(Q <)},
{Z,<)}, {{N,<)}. However, in all these cases, the satisfiability problem is
non-elementary.

Thus, reasoning about time with first-order logic is ‘very expensive.” On the
other hand, in our everyday life we rarely use explicit quantification over time
points, preferring expressions like ‘tomorrow,’ ‘always,’ ‘eventually,” ‘since,’ etc.,
which do not mention time points explicitly.

3.1.2 Propositional temporal logic

Temporal logic, as opposed to first-order logic, is an approach to reasoning about
time (and computation) using such expressions as temporal connectives and
not allowing for explicit quantification over time. Its most popular variant, the
propositional temporal logic PT L, is successfully applied in program verification
and specification (see e.g. [Manna and Pnueli, 1992; 1995]). PT L-formulas are

14
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constructed from propositional variables pg, p1, ... using the Booleans and the
binary temporal operators S (‘since’) and U (until’), the intended meaning of
which is as follows:

e y1Ux2 stands for “y; holds true until x5 holds;”
e \1SX2 stands for ‘y; has been true since x» was true.’

Other temporal connectives like Op (‘sometime in the future’), Op (‘always
in the future’), their past counterparts, and () (‘at the next moment’) can be
defined via ¢/ and S. For instance, Opp = TUp, Op = LUp.

To evaluate PT L-formulas in a flow of time § = (W, <), we have to specify
first at which time points the propositional variables hold. Thus, we start with
a wvaluation ¥ associating with every variable p a subset U(p) of W. The pair
M = (F,V) is called a model based on the flow of time F. The truth-relation
(M, w) [ ¢, or simply w |= ¢ if understood (which says that a PT L-formula ¢
holds at moment w in 9M) is defined as follows: w = p; iff w € V(p;), w = p A
iff wlE @ and w =Y, wE -~ iff w e, and

w |= S iff there is v < w such that v =9 and u | ¢ for all u € (v, w),
w = U iff there is v > w such that v = ¢ and u = ¢ for all u € (w,v).

A formula ¢ is satisfiable in a class C of flows of time if there is a model based
on a flow of time in C and a time point w in it such that w = ¢.

The following results are due to [Sistla and Clarke, 1985; Gabbay et al., 1994;
Reynolds, 2001a; Reynolds, 2001b]:

Theorem 15. The satisfiability problem for PT L-formulas is PSPACE-complete
in any of the classes mentioned in Theorem 14.

By comparing the complexity results in Theorems 15 and 14, one might
conclude that the propositional temporal language is less expressive than the
first-order language £<. Surprisingly enough, this is not the case: while £<
is considerably more succinct than P7T L, nevertheless the languages turn out
to have the same expressive power over many flows of time. Obviously, every
PT L-Aformula ¢ is expressible as an L<-formula ST (p), called the standard
translation of ¢ (see [van Benthem, 1983]). The following result is known as
the (generalized) Kamp theorem; for proofs and more details see [Kamp, 1968;
Gabbay et al., 1994].

Theorem 16. The languages PTL and LS have the same expressive power
over the flows of time (N, <), (Z, <), or (R, <). More precisely, for every L=<-
formula v with at most one free variable, there is a PT L-formula ¢ such that
¥ and ST (p) are equivalent in all models based on any Dedekind complete flow
of time.

3.2 Branching time

The formalisms considered so far are not able to express the following statements
(due to Aristotle):

e it is necessary that there will be a sea-battle tomorrow;
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e it is possible that there will be a sea-battle tomorrow.
Our languages can only say
o (Osea-battle, i.e., there will be a sea-battle tomorrow,

they do not distinguish between possible, actual, or necessary future develop-
ments. A natural way to formalize assertions of this sort is to add the modal
operators O and < to the temporal language and understand them as quantifiers
over ‘possible histories.” For example, by interpreting < as ‘it is possible that’
and O as ‘it is necessary that,” we can express two Aristotle’s statements by the
formulas OQ)sea-battle and &) sea-battle, respectively.

Numerous extensions of P77 L by means of such kind of modal operators have
been introduced in different disciplines, say, computer science and Al [Lam-
port, 1980; Clarke and Emerson, 1981; Emerson and Halpern, 1986] or phi-
losophy [Prior, 1968] (for more references and discussions see [Thomason, 1984;
Gabbay et al., 2000]). Here we outline the essential ideas using the simple modal
extension of PT L with O and <; it will be called MPT L.

Having fixed the language, we need to choose time structures that could
allow for non-trivial interpretations. Clearly, if the flow of time is linear then
at every moment the future is fixed, and so Oy is equivalent to ¢. The flows of
time we need should be able to represent different evolutions of history. Since,
on the other hand, it is natural to assume that, in contrast to the future, the
past is fixed, trees as defined below appear to be perfect structures for modelling
different histories.

Definition 17 (branching time model). A treeis a flow of time § = (W, <)
containing a point r, called the root of §, for which W = {v : r < v} U {r}, and
such that for every w € W, the set {w : v < w} is finite and linearly ordered by
<.” A history in § is a maximal linearly <-ordered subset of W.

A branching time model is a structure B = (F, H, V), where § = (W, <) is a
tree, H a set of histories in §—the set of possible flows of time in the model—and
U is a valuation in §. Formulas are evaluated relative to pairs (h,w) consisting
of an actual history h € H and a time point w € h. In such a pair (h,w), the
temporal operators are interpreted along the actual history A as in the linear
time framework, while the modal operators quantify over the set of all histories
H(w) = {h' € H :w € h'} coming through w. More precisely, the truth-relation
= between pairs (h,w) and MPT L-formulas ¢ is defined inductively in the
following way (we omit the clauses for the Booleans):

(h,w) = p iff w € BV(p);

(h,w) |= U iff there is v € h such that v > w, (h,v) = 9 and (h,u) E ¢
for all u € (w,v);

(h,w) |= S iff there is v € h such that v < w, (h,v) E ¢ and (h,u) E ¢
for all u € (v, w);

(h,w) |= Oy iff there is ' € H(w) such that (A, w) = ¢;
e (h,w) E Oy iff (h',w) & ¢ for all ' € H(w).

7Other definitions of trees can be more liberal not requiring the finitness of {w : v < w}.
One can develop the whole formalism in this more general framework; see [Thomason, 1984].
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Note that propositional variables are assumed to have no temporal aspect—their
truth-values at (h,w) do not depend on the actual history h.

The branching time model defined above reflects the Ockhamist view of
time. We refer the reader to [Burgess, 1979; Zanardo, 1996; Gabbay et al., 2000;
Reynolds, 2002] for more information about this and related approaches. Note
only a close connection to the computational tree logics CTL and CTL* that are
widely used in program verification and specification [Clarke and Emerson, 1981;
Emerson and Halpern, 1986; Clarke et al., 2000].

It might seem more natural to quantify with & and O over the set of all
histories in the tree rather than its subset H. But then we would be forced to
accept possibly unintended histories in § as possible flows of time. Here is an
example of a formula satisfiable in a branching time model as defined above,
but not in a branching time model in which # is the set of all histories. The
formula is a conjunction of the following three MPT L-formulas:

OP(Kosovo, Yugoslavia),
O0¢ rOrEC(Kosovo, Yugoslavia),
00 (P(Kosovo, Yugoslavia) — & O P(Kosovo, Yugoslavia)).

The first formula means that in all histories, at present Kosovo is part of Yu-
goslavia. The second says that in all possible histories, there’ll be a time starting
from which Kosovo will be externally connected to Yugoslavia. And the last for-
mula claims that in all possible histories, it is always the case that if Kosovo is
part of Yugoslavia then it is still possible that it will remain in Yugoslavia at
least one more day. (Since we do not have a combined spatio-temporal language
yet, the RCC-8 predicates P(K osovo, Yugoslavia) and EC(K osovo, Yugoslavia)
should be regarded as a propositional variable and its negation, respectively.)
The following results are due to [Burgess, 1979].

Theorem 18. The satisfiability problem for PTLM-formulas is decidable.

3.3 First-order temporal logic

So far, we haven’t endowed time points with any structures that could represent
states of application domains (e.g. spatial knowledge bases) at these points.
When doing these, we get into the realm of first-order temporal logic or its
variants, say, temporal description logic (see e.g. [Wolter and Zakharyaschev,

2000c]).
Suppose that in order to represent our application domain we use a first-
order language FO with predicates Py, Py, ... of some fixed arity. Assume also

that the intended flow of time § = (W, <) is linear. Then a first-order temporal
model based on § is a pair of the form 9 = (§F, m), where, for each w € W,

m(w) = (D, F’, P ....) ()

is an ordinary F O-structure, i.e., D is a non-empty set and the P;* are relations
on D of the same arity as P;. Note that the P* depend on w, while the domain
D of m(w) is assumed to be constant. Models of this type are often called models
with constant domains.
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An appropriate language for speaking about such models is the combination
of FO with PTL in which the temporal operators S and U can be applied to
first-order formulas. It will be denoted by FOT L. The temporal operators S
and U take care of the temporal dimension, while the first-order part of the
language allows us to speak about the domain dimension.

To define the truth-relation |= between time points and formulas, we first
fix an assignment a associating elements in D to individual variables. Then
(M, w) E° ¢ is defined by taking

o (M,w) 7 Pi(ay, ... ap) if mw) E Plaa),...a()],

e (M, w) E* Jzy iff there exists an assignment b which may differ from a
only on z and such that (9, w) E° ¢,

and the propositional clauses for the Booleans and temporal operators. Un-
fortunately, the resulting logics turn out to be highly undecidable for most
important flows of time. In particular, we have the following result due to Scott
and Lindstrém (unpublished); for a proof see e.g. [Gabbay et al., 1994]):

Theorem 19. The satisfiability problem for FOT L-formulas in models based
on (R, <), (Z, <), or (N, <) is not recursively enumerable.

Moreover, even seemingly simple fragments, such as the two-variable frag-
ment of FOT L (containing formulas with the variables z,y only) and the
monadic fragment of FOT L (containing fomulas with unary predicates only),
are undecidable in any natural class of flows of time [Merz, 1992; Hodkinson
et al., 2000]. These ‘negative’ results have been a serious obstacle for applying
first-order temporal logic in computer science and Al.

A certain breakthrough has been recently achieved in [Hodkinson et al., 2000;
Wolter and Zakharyaschev, 2001], where a so-called monodic fragment of FOT L
was shown to have a much better computation behavior. The monodic fragment
consists of those FOT L-formulas that do not contain a subformula starting
with § or ¢ and having more than one free variable. Unlike the full FOT L,
the set of monodic formulas valid in models based on (N, <) turns out to be
axiomatizable. Various decidable subfragments of the monodic fragment are
described in [Hodkinson et al., 2000; Wolter and Zakharyaschev, 2001]. In
particular, the following results will be used later on in this paper:

Theorem 20. (i) Let C be one of the following classes of flows of time: the class
of all strict linear orders, {{(Q,<)}, {(Z,<)}, {{N,<)}. Then the satisfiability
problem for the one-variable fragment of FOT L in models based on flows of
time in C is decidable.

(ii) Let C* be one of the classes mentioned above or {(R,<)}. Then the
satisfiability problem for the one-variable fragment of FOT L in models based
on flows of time in CT and having finite first-order domains is decidable.

(iii) In both cases, the satisfiability problem in models based on (N, <) or
(Z,<) is EXPSPACE-complete.

(The complexity of satisfiability in the flows of time different from (N, <)
and (Z, <) remains an open problem.)

Let us now turn to branching time. Given a tree § = (W, <), a set of
histories H in §, and a function m of the form (5), we can form the first-order
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branching time model M = (F,H,m). Having fixed an assignment a in D, we
define the truth-relation = between pairs (h, w) and formulas ¢ of the first-order
branching temporal logic FOBT L by taking

e (hyw) E* Op iff (W', w) E* ¢ for all A’ € H(w)

and keeping the other inductive clauses similar to the linear case. The resulting
logic is at least as complex as FOT L on (N, <); hence it is highly undecidable.
However, again the monodic fragment (consisting of all FOBT L-formulas in
which none of the temporal and modal operators has more than one free variable
in its scope) provides us with ways of obtaining decidable fragments [?]. In
particular, the following holds:

Theorem 21. (i) The satisfiability problem for the one-variable fragment of
FOBTL is decidable.

(ii) The satisfiability problem for the one-variable fragment of FOBTL in
models with finite first-order domains and finite sets of histories is decidable.

3.4 Interval temporal logic

Similar to RCC-8, instead of time points one can take extended time entities, i.e.,
intervals, as primitives. This approach to temporal representation and reasoning
reflects the fact that certain assertions can be evaluated only at periods of time
(e.g. ‘John often drinks beer’). It was developed by Allen [1983; 1984], who
observed, in particular, that relative positions of any two intervals ¢ and j of
a strict linear order can be described by precisely one of the thirteen basic
interval relations: before(i,j), meets(i, j), overlaps(i, j), during(i, j), starts(i, j),
finishes(i, 7), their inverses (i.e., before(j,7), meets(j,4), etc.), and equal(i, j).
Let us denote by .A¢¢-13 the language whose alphabet contains the thirteen
binary predicate symbols as above, interval variables i, j, etc., and the Booleans.
Formulas of A¢¢-13 are just Boolean combinations of the basic predicates.

To provide a semantics for A¢¢-13 formulas, suppose that the flow of time is
a strict linear order § = (W, <). An assignment in § is a function a mapping the
interval variables into temporal intervals in §. There may be different views on
what the temporal intervals in § should be. We take perhaps the most ‘liberal’
version by defining them as arbitrary non-empty convex sets in §. In other
words, a temporal interval a(i) in § is a non-empty subset of W such that

Ve,y ca(i) Vze W(zx <z <y — z € a(i)).

The truth-relation § =* ¢ for atomic A¢¢-13 formulas is defined in the natural
way. For instance,

T E° meets(i, §) iff Vz,y(zea(i)Ayea(j) 2z<yAVz(z<z<y
— z€a(i)Vzea(y))),
T E* overlaps(i,j) iff a(i)Na(j) Z0ATz,y(z<y
ANz ea(j)Az¢a(i) ANy €alj) Ay ¢a(i)),
§ E=° starts(i, j) iff a(i) Ca(y) Aa(i) #a(j) AVz,y (z <y
ANz €a(j)ANy €ali)nNa(j) = x € a(i)),
§ E% during(i,j) it Fz,y,z(z<y<zAz€a(j)Az¢a(i)
ANy €a(i)Azea(j)Az¢a(i)).
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We say that ¢ is satisfiable in a class C of flows of time if § =* ¢ holds for some
§ € C and assignment a in §.

Usually A¢¢-13 serves as a basis for more complex languages which, besides
temporal constraints, use other predicates such as HOLDS(¢,7) (property ¢
holds during interval 7), OCCUR(e, i) (event e happens over interval 7). Some
examples will be provided in Section 4.3.

The following result was shown in [van Beek et al., 1986):

Theorem 22. The satisfiability problem for ACL-13 formulas in any class of
linear flows of time is NP-complete.

Note also that A¢¢-13 can be easily embedded into point-based temporal
logic; for details see [Blackburn, 1993].

4 Of space and time

Following our semantical approach, we start designing logics of time and space
by defining their intended models—spatio-temporal structures—as a combina-
tion of topological and temporal models. We consider first the linear point-based
paradigm.

4.1 Spatio-temporal logics: linear point-based time

Definition 23 (topological temporal model). A topological temporal model
(or tt-model, for short) based on a topological model & of the form (4) and a
flow of time § = (W, <) is simply the pair MM = (S, F). An assignment in M is
a function a associating with each region variable X and each moment of time
w €W aset a(X,w) € R(%), the state of X at w.

Thus, tt-models can be regarded as two-dimensional structures. Having
fixed a moment of time, we can move in the ‘spatial dimension’ representing
the states of regions at this moment. Having fixed a spatial region, we can
move along the ‘temporal dimension’ tracing the evolution of this region in
time. (Note the difference from first-order temporal models in which the values
of individual variables are constant over time, while the extensions of predicate
symbols can vary.)

Let us turn now to the syntactical parameters of spatio-temporal hybrids.

4.1.1 Quantification over regions

Unfortunately, quantification over region variables in tt-models—even for ex-
tremely weak languages—results in undecidable or non-axiomatizable logics.
We show here only one example. Consider the first-order spatio-temporal lan-
guage FOST based on the following alphabet:

e an infinite set of local region variables Xq, X1, ...;
e an infinite set of global region variables Yy,Y1,...;
e the binary temporal operator U (‘until’);

e the binary predicate EQ(Z1, Z2);
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FOST-formulas are defined as follows:
e EQ(Z1,Z,) is an atomic formula, where Z;, Z, are region variables;

e if ¢ and 9 are formulas and X is a global region variable, then —p, ¢ A1,
and VX ¢ are formulas.

The difference between local and global region variables is that the former range
over ‘mobile’ regions, while the latter denote regions that are supposed to be
immovable. Thus, an assignment a in a tt-model 9 = (&, F) should be such
that a(Y;,u) = a(Y;,v) for any time points u and v in § and any global variable
Y;. The definition of the truth-relation must be clear: we put

(EIR,’U)) |:a EQ(Zl,ZQ) iff Cl(Zl,’LU) = CI(ZQ,’LU)

and define the Booleans, quantifiers, and the temporal operator in the standard
way.

Thus, in this language we can reason about the equality of regions over
time, but nothing else. The language looks completely ‘harmless.” And yet, the
following is easily derived from results of [Merz, 1992]:

Theorem 24. The satisfiability problem for F OST -formulas in tt-models based
on infinite flows of time is undecidable; it is not even recursively enumerable for
the flows (N, <) and (Z,<).

The reason explaining such a ‘bad’ computational behavior is the interaction
between the temporal operator and the quantifiers over region variables, which
is similar to the interaction between the compass operators in Example 1. Again
we are forced to omit quantification and take BRCC-8 as the spatial component
of the spatio-temporal logics to be constructed.

4.1.2 Spatio-temporal representation based on BRCC-8

In this section, we construct three spatio-temporal logics based on BRCC-8. We
denote them by ST ¢—ST>.

STo. The simplest one allows applications of the temporal operators S and U
only to BRCC-8 formulas. More precisely, the spatio-temporal language ST is
defined as follows. Every formula of BRCC-8 is also an ST g-formula, and if ¢
and v are ST o-formulas then so are pSv, UV, p A1, and —p. As usual, we
use the abbreviations Q¢ = LUy, Cpp = TUp, Opp = =Op—yw; a new one
is Wiy = Opp V (pUr)), where W stands for ‘waiting for’ (it is also known as
‘unless;’ see [Manna and Pnueli, 1992]).

For a tt-model M = (&S, F), an assignment a in it, an ST o-formula ¢, and
a time point w in §, define the truth-relation (M, w) |=* ¢ by induction on the
construction of ¢. Let a,, be the assignment in & defined by a,,(X) = a(X, w),
for every region variable X. Now,

e if ¢ contains no temporal operator, then (I, w) £ ¢ iff & % ¢;

e (M, w) =* ol iff there is v > w such that (M, v) E* ¢ and (M, u) E* ¢
for every w in the interval w < u < v;
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o (M, w) E* pS iff there is v < w such that (M, v) |=* ¥ and (M, u) = ¢
for every u in the interval v < u < w.

The interaction between time and space in ST is rather weak. In fact, sat-
isfiability of ST o-formulas in a given infinite flow of time § is easily, but ex-
ponentially, reducible to satisfiability of P7 L-formulas in §. (As we saw in
Section 2.2.3, BRCC-8 is reducible to S5, which, in turn, can be exponentially
reduced to PTL.) Moreover, for (N, <) a PSPACE satisfiability checking algo-
rithm was constructed in [Wolter and Zakharyaschev, 2000b]. To sum up, using
Theorem 15, we obtain:

Theorem 25. Let CT be one of the classes defined in Section 8.3. Then the
satisfiability problem for STo-formulas in tt-models based on flows of time in
C* is decidable in EXPSPACE. For (N, <) it is PSPACE-complete.

It is an open problem whether satisfiability of ST o-formulas in flows different
from (N, <) can be checked in PSPACE as well.

The language ST is expressive enough to capture some aspects of continuity
of changes (see e.g. [Cohn, 1997)):

DC(X,Y) — DC(X,Y) WEC(X,Y),
EC(X,Y) — EC(X,Y) W (DC(X,Y) V PO(X,Y)),
PO(X,Y) — PO(X,Y) W (EC(X,Y) V

)
TPP(X,Y) VEQ(X,Y) v TPPi(X,Y)),

etc.

The first of these formulas, for instance, says that if two regions are disconnected
at some moment, then either they will remain disconnected forever or they are
disconnected until they become externally connected. If the flow of time is
discrete then these conditions are equivalent to:

DC(X,Y) —» O(DC(X,Y) V EC(X,Y)),

EC(X,Y) - O(EC(X,Y) v DC(X,Y) VvV PO(X,Y)),

PO(X,Y) - O(PO(X,Y) VEC(X,Y)

TPP(X,Y) VEQ(X,Y) Vv TPPi(X,Y)),
etc.
However, the expressive power of ST is rather limited. In particular, we

can compare regions only at one moment of time, but we are not able to connect
a region as it is ‘today’ with its state ‘tomorrow’ to say, for example, that it is

expanding or remains the same. In other words, we can express the dynamics
of relations between regions, say,

—OrP(Kosovo, Yugoslavia)

(‘it is not true that Kosovo will always be part of Yugoslavia’), but not the
dynamics of regions themselves, for instance, that

OpP(EU,QEU),

where Q)EU at moment n intends to denote the space occupied by the EU at
the next moment (so for the flow of time (N, <), the last formula means: ‘the
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EU will never contract’). This new constructor may also be important to refine
the continuity assumption by requiring that

Or(EQ(X,OX)VvO(X,0OX)),

i.e., ‘regions X and (X either coincide or overlap.’

ST1. To capture this dynamics, we extend ST by allowing applications of
the next-time operator () not only to formulas but also to Boolean region terms.
Thus, arguments of RCC-8 predicates can be now arbitrary ()-terms which are
constructed from region variables using the Booleans and (). For instance,
O O X represents region X as it will be ‘the day after tomorrow.” Denote
the resulting language by ST, and let ST be its sublanguage with only one
temporal operator () (S and U are not allowed). Obviously, ST is more
expressive than ST only for discrete flows of time; in dense flows like (Q, <)
or (R, <) the ‘next-time’ operator makes no sense. If M = (S, F) is a tt-model,
a an assignment in it, and ¢ a ()-term, then we put

a(Ot,w) = a(t,w') if w' is an immediate successor of w in F,
R if w has no immediate successor in §.

Theorem 26. (i) The satisfiability problem for ST 1-formulas in tt-models based
on flows of time in C is decidable; for (N, <) and (Z,<) it is decidable in EX-
PSPACE.

(ii) The satisfiability problem for ST -formulas in tt-models based on (N, <)
is NP-complete.

The EXPSPACE-upper bound and (ii) are proved in [Wolter and Zakharyaschev,
2000b]. A proof of (i) based on an embedding into first-order temporal logic is
sketched below and given in detail in [Gabbay et al., 2001]. (The lower bound
is still unknown.)
Using ST1 we can express in (N, <) that region X will always be the same,
i.e., X is global (or rigid):
I:|F EQ(Xa OX)a

or that it has at most two distinct states, one on ‘even days,” another on ‘odd
ones:’

OrEQ(X, O O X).
Note, by the way, that the ST ;-formula

OrNTPP(X,OX)

is satisfiable only in models based on infinite topological spaces—unlike BRCC-8
formulas, for which finite topological spaces are enough (see Theorem 10).

It may appear that ST is able to compare regions only within fixed time
intervals. However, using an auxiliary global variable X we can write, for in-
stance,

OrEQ(X,OX) AOrEQ(X, EU) A P(Russia, X).

This formula is satisfiable iff ‘some day in the future the present territory of
Russia will be part of the EU.” Note that the formula

O pP(Russia, EU)
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means that there will be a day when Russia—its territory on that day (say,
without Chechnya but with Byelorussia)—becomes part of the EU.

Imagine now that we want to express in our spatio-temporal language that
all countries in Europe will pass through the euro-zone, but only Germany (in
its present territory) will use the euro forever. Unfortunately, we don’t know
which countries will be formed in Europe in the future, so we can’t simply write
down all formulas of the form

OpP(X, Euro-zone).

What we actually need is the possibility of constructing regions ¢pX and Op X
which contain all the points that will belong to region X in the future and only
common points of all future states of X, respectively. Then we can write:

EQ(Europe, O pEuro-zone) and EQ(Germany,Op Euro-zone).

The formula P(Russia, OpEU) says that all points of the present territory of
Russia will belong to the EU in the future (but perhaps at different moments
of time).

ST2. Solet us extend ST by allowing the use of temporal region terms, con-
structed from region variables, the Booleans, and the temporal operators ¢ and
S with all their derivatives, as arguments of the RCC-8 predicate. The resulting
language will be denoted by S7>. The intended semantics of temporal region
terms is as follows. Suppose M = (6, F) is a tt-model and a an assignment in
it. Define inductively the value a(t,w) of a temporal region term ¢ under a at
w in M by taking:

a(Opt,w) =CI | ] a(t,v),
v>w

a(0pt,w) = CI ﬂ a(t,v),

v>w
a(tiltz,w) = Cl{z: Jv > w(z € a(tz,v) AVu(w <u<v—z€a(ty,u)))},
a(t1Sta,w) = Cl{z: Jv < w (z € a(t2,v) AVu(w >u>v - x € a(ta,u)))},

and the corresponding clauses for ¢p and Op. For example, the formula
DC(Russia S Russian_Empire, Russia S Germany)

can be used to say that the part of Russia that has been remaining Russian
since 1917 is not connected to the part of Germany (K&nigsberg) that became
Russian after the Second World War.

We remind the reader that we have to use the prefix CI in the right-hand
parts of the definition above because infinite unions and intersections of regular
closed sets are not necessarily regular closed (see (1); however, this is the case for
models based on Kripke spaces), while all temporal region terms are supposed
to be interpreted by ‘regions’ of topological spaces.® Actually, as we shall see

81t is also worth noting that the operators Or and O on temporal region terms are
dual in the sense that for every assignment a, every term ¢, and every moment w we have
a(<>Ft,w) = a(‘\DF‘\t,’w).
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below, infinite operations bring various semantical complications. To avoid this
problem we can try to restrict assignments in models in such a way that infinite
intersections and unions can be reduced to finite ones. There are different ways
of doing this. One idea would be to accept the Finite Change Assumption:

FCA No region can change its spatial configuration infinitely often.

This means that under FCA we consider only those assignments a in tt-models
M = (6, F) that satisfy the following condition: for every temporal region term
t there are pairwise disjoint convex sets I, ..., I of points in § = (W, <) such
that W = I; U---U I, and the state of ¢ remains constant on each I;, i.e.,
a(t,u) = a(t,v) for every u,v € I;. Note that for the flow § = (N, <), FCA can
be captured by the ST ;-formulas ¢pOrEQ(t, Ot).

Of course, FCA excludes some mathematically interesting cases. Yet, it is
absolutely adequate for many applications, for example, when we are planning
a job which eventually must be completed (consider a robot painting a wall).
Optimists would accept FCA to describe the geography of Europe in the exam-
ples above. In temporal databases the time line is often assumed to be finite,
though arbitrarily long, which corresponds to FCA. Another, more general,
way of reducing infinite unions and intersections to finite ones is to adopt the
Finite State Assumption:

FSA Every region can have only finitely many possible states (although it
may change its states infinitely often).

Say that a tt-model 9 = (&,F) with an assignment a satisfies FSA, or
is an FSA-model, if for every temporal region term ¢ there are finitely many
sets Ay,...,Ap € R(T) such that {a(t,w) : w € W} = {Ay,..., An}. These
models can be used, for instance, to capture periodic fluctuations due to season
or climate changes, say, a daily tide.

Theorem 27. (i) The satisfiability problem for STao-formulas in FSA-models
based on flows of time in CT is decidable; for (N,<) and (Z,<) it is decidable
in EXPSPACE.

(ii) An ST2-formula is satisfiable in an FSA-model iff it is satisfiable in an
FSA-model based on a finite topological space.

For the flow (N, <) this result is proved in [Wolter and Zakharyaschev, 2000b]. A
proof of the general result is provided in [Gabbay et al., 2001]. It is based on an
embedding into first-order temporal logic and sketched below. The complexity
of the satisfiability problem in (i) is unknown.

It is worth noting that, instead of the propositional temporal language PT L,
we could have combined with BRCC-8 the first-order language £=<. We would
then obtain a two-sorted language with variables ¢ of sort ‘time’ ranging over
time points and variables X of sort ‘region’ ranging over regions in topologi-
cal spaces. The new ingredient would be eight ternary predicates DC(¢, X,Y),
EC(t,X,Y), etc., the intuitive meaning of which is ‘at moment ¢, region X is
disconnected from region Y’ etc. Similarly to Kamp’s theorem on the expres-
sive equivalence of £< and PT L, one can show that certain two-sorted logics
have the same expressive power as certain logics in the ST ;-hierarchy.

25



4.1.3 Example

We illustrate possible applications of the language introduced in the previous
section by showing a toy spatio-temporal knowledge base. Consider the following
scenario of how the foot and mouth epidemic spreads across a country. Assume
that the country consists of disjoint regions: farms, towns, forests, rivers, etc.
The map of the country can clearly be represented as a database of RCC-8
formulas. Besides, we require that all these regions are rigid, i.e., DJ}EQ(X, OX)
(as quantification over regions is not allowed, we have to write such formulas
for all regions X on the map). Now, suppose that at moment 0 foot and mouth
has been detected only at one farm Xg:

EQ(F&M, Xo) A P(Xo, Farm).

The region FE&M, representing the current contaminated part of the country, is
not rigid. Nor is the region Stock representing the farms with live-stock. Let
Xo,...,X, be all the farms in the country. We then should clearly have, for all
1 <mn:

07 (0(X;, Stock) — P(X;, Stock)).

OfP(Stock, Xo U -+ U X,,).

OfP(F&M, Stock).
Suppose also that if one farm suffers from foot and mouth, then at the next

moment the disease will spread to all neighboring farms with stock, but not
further, i.e., for all ¢,j < n,

D; (P(XZ, F@]W) N EC(X“ XJ) A P(Xj, Stock) — OP(X], F@’]M))
D;C(—'EC(Xi, F&M) — O-P(X;, F&EM)).
As the government takes proper measures against the disease, in a few moments
(say, two for definiteness), a farm with foot and mouth will have no live-stock.
On the other hand, the government is going to help the farmers to continue

their business, so eventually new stock will be purchased (but nobody knows
when):

T (P(X:, FEM) + O O (<O(X:, FEM) A ~0(X;, Stock)) ).
07 (P(X;, Stock) — © pP (X, Stock)).

Denote the resulting knowledge base by 3. We can use it to answer queries
like ‘how much time the government needs to get rid of the disease’ or ‘when it
is safe to buy new animals,’ for instance, by checking whether formulas of the
form

O--- O EQ(FEM, 1).
O---O (~0rP(Xi, FEM))

are logical consequences of X.
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It is worth noting that in this example we have a typical mixture of ‘a sort
of’” model checking and deduction: while the map of the country is simulated by
taking all RCC-8 relations which hold true between farms, towns, forests, etc.,
knowledge about fluents like FéM and Stock is incomplete, since it depends
on the future development. So to decide whether ¥ |= ¢ holds or not proper
deduction (or theorem proving) is required (cf. [Halpern and Vardi, 1991]).

4.1.4 Modal formalisms for spatio-temporal reasoning

We saw in Section 2.2.4 that BRCC-8 can be embedded into the bimodal logic
S4, (which yields decidability) and then into the one-variable fragment of classi-
cal first-order logic (which yields NP-completeness). Similarly, the constructed
temporalizations of BRCC-8 can be translated into the language PST, or propo-
sitional spatio-temporal language, that contains the temporal operators S and
U, and the ‘spatial’ operators of S4, (i.e., I, and their duals). The in-
tended models of PST, called topological PST -models, are triples of the form

= (%, 3, 4), in which ¥ = (U, 1) is a topological space, § = (W, <) a flow of
time, and Y is a valuation associating with every propositional variable p and
every w € W a set U(p,w) C U. i is then extended to arbitrary PST-formulas
in the following way:

o (Y Ax,w) = U(W, w) NU(x,w);

Y, w) =U — U, w);

WE 1, w) = U if U, w) = U, and Y(E ), w) = ) otherwise;
Iy, w) = (¢, w);

e z € U(YUx,w) iff there is v > w such that = € U(x,v) and = € U(Y,u)
for all u € (v, w);

(
U(=
(ke
U

e z € U(pSx,w) iff there is v < w such that = € U(x,v) and = € U(Y,u)
for all u € (v, w).

In particular,
o Y(Oppv) = | U@,v), UWOppw) = () Uw,0).
v>w v>w

A PST-formula ¢ is satisfied in N if U(p, w) # @ for some w € W.
Say that a topological PST-model 9t = (T, §,U) satisfies FSA if, for every
variable p, there are finitely many sets Uy, ..., U, C U such that

{U(p,w) :w e W} ={Ux,...,Up,}.

We can now extend the translation -* from BRCC-8 into S4,, defined in
Section 2.2.4, to a translation from S7>-formulas into the language of PST.
For temporal region terms we need two extra clauses:

(LUt = CIEUL),
(t, St)* = CI(t: St).
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Note that we then also have:
(Ot)* = Ot*, (<>Ft)* = CIOFt*, (Dpt)* = CIOgt".

For atomic ST o-formulas P(t1,t2), the translation P(¢;,)* is defined in pre-
cisely the same way as in Section 2.2.4. Suppose now that ¢ is an arbitrary
STo-formula. Then ¢* denotes the result of replacing all occurrences of atoms
P(t1,t2) in ¢ with (P(t1,t2))*. It should be clear from the definition that we
have:

Theorem 28. An ST a-formula ¢ is satisfiable in a tt-model (with FSA) based
on a flow of tiem § iff ©* is satisfiable in a topological PST -model (with FSA)
based on §.

Unfortunately, we can’t conclude from this result that ST s is decidable. It
is a challenging open problem to find out whether satisfiability of PST -formulas
in arbitrary topological models, or even only in those based on Kripke spaces,
is decidable.

Note that the PST-formula OrCp < COpp is valid in all PST-models
based on Kripke spaces, but not on arbitrary topological spaces, simply because
there is an infinite sequence of closed sets in R the union of which is not closed.
However, the two types of models turn out to be equivalent with respect to the
modal translations of (a) STi-formulas, and (b) ST »-formulas provided that
models satisfy the finite state assumption FSA. Moreover, in both cases we
can again take advantage of the special form of these translations and show
that PST-models based on quasisaw Kripke spaces are enough to satisfy all
satisfiable formulas (see [Gabbay et al., 2001] for a proof):

Theorem 29. (i) An ST 2-formula ¢ is satisfied in a tt-model with FSA based
on a flow of time § iff ¢* is satisfied in a PST-model with FSA based on §
and a quasisaw Kripke space.

(ii) An ST1-formula ¢ is satisfied in a tt-model based on a flow of time §
iff p* is satisfied in a PST -model based on § and a quasisaw Kripke space.

We can now use this result to ‘lift’ the translation - of BRCC-8 formulas into
the one-variable fragment of first-order logic to a translation of ST »-formulas
into the one-variable fragment of first-order temporal logic. This can be done
by adding to the definition of the translations -*, -/, and -" in Section 2.2.4 two
more clauses:

(pUY) = UY',  fori=b,l,r,
(pS) = ' Syt,  fori=b,l,r.
Given an ST »-formula ¢, we put o' = (¢*)?. Note that, as before, p! contains

a single individual variable.

Theorem 30. Suppose § is a flow of time and ¢ an STz-formula. Then the
following conditions are equivalent:

1. ¢* is satisfiable in a PST-model (with FSA ) based on § and a quasisaw
Kripke space;

2. ¢l is satisfiable in a first-order temporal model based on § (and having a
finite domain).
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Now a proof of Theorem 26 (i) is obtained by combining Theorem 20 (i) and
(iii) with Theorem 29 (ii) and Theorem 30. A proof of Theorem 27 (i) follows
from Theorem 20 (ii), (iii), and Theorems 29 and 30.

4.1.5 Temporal models based on Euclidean spaces

As we observed in Section 2.2.2, there exist satisfiable BRCC-8 formulas that
are not satisfiable in any connected (in particular, Euclidean) topological space.
A simple example is the conjunction ¢ of the following predicates:

EQ(X; UX,,Y), NTPP(X.,Y), NTPP(X,,Y), DC(Y,Z).

Clearly, ¢ is satisfied in the discrete space with three points. Note now that if
© holds in some topological space, then X; LI X5 is closed and included in the
interior of Y. On the other hand, it coincides with Y. Hence, Y is both closed
and open. However, Y is not the whole space because it is disjoint with Z.

A similar effect can be achieved in the spatio-temporal case even without
using the Boolean operations on region terms simply because unions of regions
are implicitly available in ST in the form of Cp. Consider, for instance, the
conjunction ¢ of the predicates:

EQ(¢rX,Y), NTPP(OX,Y), NTPP(OCrX,Y), DC(,2Z2).

One can readily check that 1) is satisfiable in some tt-model with FSA, but not
in a model based on a connected topological space, in particular R", for any
n>1.

It is an interesting open problem whether satisfiability of ST >-formulas (with
or without the Booleans on region terms) in models (with FSA) based on Eu-
clidean spaces is decidable (cf. [Renz, 1998]). We only know that the following
holds (see [Wolter and Zakharyaschev, 2000b] for a proof):

Theorem 31. If a set of ST1-formulas without Boolean operations on region
terms is satisfiable in a tt-model based on (N, <), then it is also satisfiable in a
model based on (N, <) and R™, for any n > 1.

4.2 Spatio-temporal logics of branching time

In the framework of linear time spatio-temporal logics, we can say, for instance,
that the UK will join the euro-zone: ©pP(UK, Euro-zone). We can also say
that this will never happen. But we are not able to convey the reality, viz., that
both variants are possible:

OO RP(UK, Euro-zone) A O—=0OpP (UK, Euro-zone).

Nor can we make the foot and mouth scenario above more realistic by saying
that the disease possibly spreads to the neighboring farms. In this section, we
show how the spatio-temporal formalisms developed so far can be extended to
the branching time paradigm capable of making assertions about alternative
histories.

At the syntactical level we have two options: to allow applications of O and
<& only to ST ;-formulas, or to both formulas and temporal region terms. The
resulting languages will be denoted by ST B; (the former option) and ST B (the
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latter one). In the latter case, we also have to update the notion of temporal
region term by adding to its definition the clause: if ¢ is a temporal region term,
then so are Ot and ©t. For example, the following ST B3 -formula

007 (EQ(Europe, OEurope) A P(EU, Europe)) A
P(Europe,& O EU) ANP(O(Q EU, EU)

says that, whatever happens, the region occupied by Europe will always remain
the same and the EU will be part of Europe; moreover, every part of Europe has
a possibility to join the EU next year, while, on the hand, what will certainly
belong to the EU next year, is only part of the EU as it is today.

The extension of tt-models to branching time topological models is straight-
forward:

Definition 32 (branching tt-models). A branching time topological model
(a btt-model, for short) is a triple M = (&,F,H), where & is a topological
model, § = (W, <) a tree, and H a set of histories in §. An assignment a in I
associates with every region variable X and every w € W a set a(X,w) € R(%).

Given a region term ¢, a time point w € W, and a history h € H, define the
value a(t, h,w) of ¢t at w relative to h inductively by taking

a(X,h,w) = a(X,w), X a region variable;
a(Ot,h,w)=CI | a(t,h,w

h'eH (w)
a(0t,h,w)=CI () a(t,h',w
h'eH (w)

a(tU s,h,w)=Cl{zeU:Fv>w(wehAzeca(t,hv) A
Yu € (w,v) z € a(s,h,u)},
the standard clauses for the Booleans and a dual clause for S. Now, for a

formula ¢ and a pair (h,w), the truth of ¢ at (h,w) in 9 is defined inductively

as follows:
[ ]

,w) E* P(s,t) iff & = Pla(s, h,w),a(t, h,w)], for atomic P(s,t);

(h
(h,w) E* YU x iff there is v > w such that v € h, (h,v) E* x, and
(h,u) E* 4 for all u € (w,v);

e (hyw) E* Oy iff there is ' € H(w) such that (b, w) E* ¢;

o (h,w) E* Op iff (b, w) |E* ¢ for all b’ € H(w),

plus the standard clauses for the Booleans and S.

The computational behavior of the spatio-temporal logics of branching time
is similar to that we have observed above in the linear case. First, we have:

Theorem 33. There is an algorithm which, given an ST By -formula ¢, decides
whether ¢ is satisfiable in a btt-model or not.

This result can be proved by extending the embedding of ST into FOT L
to an embedding of ST B, into the one-variable fragment of FOBT L and then
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applying Theorem 21 (i). No significant result on the computational complexity
of ST B;-formulas has been obtained yet.

As to satisfiability of ST B; -formulas, we again face the problem of infinitary
operations on temporal spatial terms. Now, besides the temporal operators, the
spatial terms can also be affected by the modal operators O and <. Say that a
btt-model M = (S, F, H) is a finite branching model if the set H of histories in
it is finite. The finite state assumption FSA is applied now to each history.

Theorem 34. (i) It is decidable whether an ST BT -formula is satisfiable in a
finite branching model.

(ii) It is decidable whether an ST By -formula is satisfiable in a finite branch-
ing model with FSA.

The proof is conducted by embedding ST By into the one-variable fragment
of FOBTL and applying Theorem 21 (ii). Nothing is known about the com-
putational complexity of these satisfiability problems yet. The decidability of
the satisfiability problem for S7 B3 -formulas in arbitrary btt-models or only in
those based on Euclidean spaces is also open.

4.3 BRCC-8 + Al¢-13

Since the region-based approach to spatial reasoning was inspired by and closely
mirrors the interval-based approach to temporal reasoning—they both take ex-
tended entities rather than points as primitives—it would seem far more natural
to temporalize BRCC-8 by combining it with an interval based temporal logic.
In this section we show a variant of such a combination.

Following [Allen, 1984] we write HOLDS(y, ) to say that a formula ¢ holds
during a time interval i. For example, HOLDS(PO(X,Y), ) means that during
interval i regions X and Y partially overlap. Let us call an ARCC-8 formula
any Boolean combination of atomic A¢¢-13 formulas, and formulas of the form
HOLDS(¢, %), where ¢ is a BRCC-8 formula.

ARCC-8 formulas are interpreted in standard topological temporal models
M = (S, F) based on linear flows of time. The only essential difference is that
now an assignment a in 91 associates with every interval variable ¢ a non-empty
convex set a(i) in §, and with every region variable X and every time point w it
associates a regular closed set a(X,w) in &. The truth-relation for the A¢¢-13
atomic formulas is defined as in Section 3.4, and HOLDS(y, ) is true in 9t iff
for every point w € a(i), we have & " ¢ (as defined in Sections 2.2.1 and
2.2.2).

Here is a simple example of a ‘knowledge base’ ¥ in this unsophisticated
language:

meets(i, j) A during(i, k) A during(j, k).
HOLDS(TPP(Hong_Kong, UK) N EC(Hong_Kong, China), z)
HOLDS(DC(Hong_Kong, UK),j).

HOLDS (EC(UK, China) v DC(UK, China), k).

If ¥ is true in a tt-model 2 under an assignment a, then the formula ¢

HOLDS (EC(UK, China), i)
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also holds in 99t under a, i.e., ¢ is a logical consequence of X.

A straightforward combination of the satisfiability checking algorithms for
All-13 and BRCC-8 yields a satisfiability-checking algorithm for ARCC-8. More
precisely, we have the following:

Theorem 35. The satisfiability problem for ARCC-8 formulas in tt-models is
NP-complete.

An interesting open problem is to find tractable fragments of ARCC-8, for
instance, by combining tractable fragments of RCC-8 and A¢¢-13 [Nebel and
Biirckert, 1995; Renz and Nebel, 1999).

As was noted in Section 3.4, Af¢-13 can be embedded into propositional
temporal logic. Together with the modal translation of BRCC-8, this yields an
embedding of ARCC-8 into the language PST interpreted in topological PST -
models based on linear flows of time, and then into the one-variable fragment of
first-order temporal logic. For details the reader is referred to [Bennett et al.,
2001; Gabbay et al., 2001].

5 Concluding remarks

Now, as we have constructed a family of decidable spatio-temporal formalisms,
a natural question is whether they are ‘implementable.’

5.1 Implementable algorithms

The satisfiability problems for all our logics are polynomially reducible to the
satisfiability problems for the one-variable fragments of first-order temporal log-
ics. We have also seen that usually these fragments are decidable. So the ques-
tion is whether they can be supported by ‘practical’ decision procedures.

One idea would be take advantage of the fact that the one-variable (and
other monodic) fragments of many temporal logics are embeddable into monadic
second-order logic (in the case of FCA or FSA even weak monadic second-order
logic may be enough) [Hodkinson et al., 2000] and use provers like MONA (see
e.g. [Klarlund et al., 2000] and references therein). Unfortunately, however, the
translation from [Hodkinson et al., 2000] is exponential, which will make the
prover’s job much harder.

On the other hand, a tableau decision procedure for the one-variable frag-
ment of first-order temporal logic based on (N, <) has been developed in [Lutz et
al., 2001] as a combination of Wolper’s [1985] tableau for PT L and a standard
tableau for (the one-variable fragment of) first-order logic. Currently, a similar
tableau-based procedure is being implemented for temporal description logic
[Giinsel and Wittmann, 2001], and we expect significant experimental results
on the efficiency of the procedure shortly. Positive results would allow the con-
struction of a practical system for the language ST (without S) interpreted in
tt-models based on (N, <) and possibly infinite topological spaces. That would
also open the door to an implementation of a decision procedure for ST in
models based on (N, <) and finite topological spaces.
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5.2 Further extensions

The obtained results make only first steps in the study of effective spatio-
temporal formalisms. Many interesting problems remain open for investigation.
For instance, it would be interesting and practically important to extend the
spatio-temporal logics with constructors allowing us to speak about orienta-
tion (say, go West), change, and distances. On the other hand, we also need
constructors to represent properties of regions different from purely spatial or
temporal (e.g. ‘region X is a tourist attraction accessible only by plane’). A
promising idea is to combine spatio-temporal logics with suitable description
logics (see e.g. [Haarslev et al., 1998]; a combination of description logic with
metric logic has been proposed in [Kutz et al., 2001].)

An interesting problem is to find and temporalize more expressive and still
decidable fragments of RCC. For example, one can consider a Datalog-type lan-
guage with built-in basic spatial predicates. We could then compose knowledge
bases like:

P(Y, euro-zone) < P(X, euro-zone) AEC(X,Y) A PP(Y, europe).
P(germany,euro-zone).

EC(germany,poland).

PP(poland,europe).

EC(poland,russia).

O(russia,asia).

EC(europe,asia).

The answer to the query ?P(poland,euro-zone) should be YES, while the an-
swer to ?P(russia,euro-zone) should be NO. The language can be extended with
Boolean region terms.

Till now we have not imposed any restrictions on the form of spatial regions.
However, applications in GIS may require to consider only the Euclidean space
R? and interpret regions in them as figures of some special form, say, as circles
or polygons [Grigni et al., 1995]. But it is still an open problem whether the
satisfiability problem for RCC-8 formulas under such interpretations is decidable.
A similar question can be asked regarding BRCC-8 and the spatio-temporal
logics constructed above.

Halpern and Shoham [1991] introduced a modal logic of intervals whose
modal operators correspond to the thirteen relations of Allen’s interval logic
(see Section 3.4). One can construct a similar modal logic® of regions with eight
modal operators of the form (TPP). The intended meaning of these modalities
is as follows. Suppose we have a topological model & of the form (4) and
a region X in ¥. Then (TPP)¢ holds at X in & if there is a region Y in
% such that TPP(X,Y) and ¢ holds at Y. An interesting research problem
is to investigate the computational behavior of this logic for different classes of
topological models. (The logic of Halpern and Shoham is undecidable if intervals
are taken on an infinite time-line.)

Acknowledgments. We would like to thank A. Voronkov for stimulating dis-
cussions.

9The idea is due to C. Lutz.
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