Mereology 1

Thomas Bittner thomas.bittner@ifomis.uni-leipzig.de

Overview

- · Introduction and examples
- · Mereology as formal theory
- Ground mereology (GM) as partial ordering
- Models of ground mereology (GM)
 Some defined primitives of (GM)
- Consequences of axioms and definitions
 Some theorems of (GM)
- · Assignments and Summary

The intuitive meaning of the word part-of and examples of its linguistic use

Usage of the word part in natural language

- 1. The handle is part of the cup.
- This cap is part of my pen.
 The left half is your part of the cake.
 The US is part of North America.
- The contents of this bag is only part of what I bought.
- 6. That comer is part of the living room.
- 7. The outermost points are part of the perimeter.8. The first act was the best part of the play.

used to indicate any portion of a given entity that is

- · attached to the remainder
 - The handle is part of the cup.
- · detached from the remainder:
- This cap is part of my pen.
- · arbitrarily demarcated,
 - The left half is your part of the cake.

used to indicate any portion of a given entity that is

- · self-connected
- The handle is part of the cup.
 The left half is your part of the cake.
- disconnected
- The US is part of North America.
- homogeneous
- The handle is part of the cup.
- The US is part of North America.

used to indicate any portion of a given entity that is

- Gerrymandered
- The contents of this bag is only part of what I bought.
- Material
 - The handle is part of the cup.
 - The contents of this bag is only part of what I bought.
- Immaterial
- That corner is part of the living room.

used to indicate any portion of a given entity that is

- Extended
- The handle is part of the cup.
- That comer is part of the living room.
- Unextended
 - The outermost points are part of the perimeter.

used to indicate any portion of a given entity that is

- Spatial
- The handle is part of the cup.
- The outermost points are part of the perimeter.
- Temporal
 - The first act was the best part of the play.

Abstract parts

- · The integers are part of the reals
- The first chapter is part of the novel.
- · Humanity is part of personhood

Non-mereological use of the word part

- The clay is part of the statue
- Constitution
- · The gin is part of martini
- Chemical composition
- · Writing comments is part of being a good
- Conceptual inclusion

Mereology as a formal theory of parthood

Formal axiomatic theories of mereology

- · Formulated in standard first or second order logic
- Include special symbols which are supposed to designate mereological relations or functions
- Some relations are treated as *primitives*: they are not defined. Axioms stipulating their logical properties are included the theory
- Other relations are defined in terms of the primitives

Formal axiomatic theories of mereology (2)

- A consistent formal theory has models:
 - models are collections of individuals
- which satisfy the axioms of the theory when the primitives are interpreted in a certain way with respect to these individuals.

The logical language

- · First order language with identity
- Variables ranging over individuals, $x,y,z,\,\dots$
- Logical connectivities: &, or, ⇒, ⇔
- Universial and extensional quantification: (x),
- Leading universal quantifiers are omitted, i.e., we write P xx instead of (x)(P xx)

The non-logical primitive

- P xy
- Intended interpretation: x is a part of y
- examples
 - P your-hand you
 - P MountEverest Earth
 - P xy

Other authors have used other relations as primitives:

- · Proper parthood (Simons)
- Disjointness (Leonard and Goodmann)
- Overlap (???)

Axioms

- Specify the meaning of the non-logical primitives
- Constrain the models of the theory
- · Mereological structures
 - Models of mereology
 - Special kind of partial orderings

Parthood as partial ordering (1)

- Axiom of reflexivity
- Everything is part of itself
- -P xx
- · Axiom of antisymmetry
 - If two things are parts of each other then they are identical
- $-P xy & P yx \Rightarrow x = y$

Parthood as partial ordering (2)

- · Axiom of transitivity
- P xy

Parthood as partial ordering (2)

- Axiom of transitivity
- − P xy & P yz

Parthood as partial ordering (2)

· Axiom of transitivity $- P xy & P yz \Rightarrow P xz$

Axioms of Ground mereology - \boldsymbol{M}

- M1 P xx
- M2 $P xy & P yx \Rightarrow x = y$
- M3 $P xy & P yz \Rightarrow P xz$

Models of Ground Mereology

Algebraic structures

- An algebraic structure is a pair (S,R)
 - S is a set of entities - R is a binary relation
- Examples
- Examples $\begin{aligned}
 &-A_1 = (S_1, R_1) \\
 &\cdot S_1 = \{a,b\} \\
 &\cdot R_1 = \{(a,a), (a,b), (b,b)\} \\
 &-A_2 = (S_2, R_2) \\
 &\cdot S_2 = \{a,b,c\} \\
 &\cdot R_2 = \{(a,a), (a,b), (b,b), (b,c), (cc)\}
 \end{aligned}$

Models

- An algebraic structure A = (S, R) is a model of a set of axioms with a single non-logical primitive P if and only if
 - The non-logical primitive P is interpreted as the
- the relation R of the structure

 The axioms are true for each assignment of the variables with entities of the domain S

Example 1

- Structure $A_1 = (S_1, R_1)$ with $S_1 = \{a,b\}$ $R_1 = \{(a,a), (a,b), (b,b)\}$
- We interpret P as R₁
 We then need to verify that the axioms
- P xx
- $-P xy & P yx \Rightarrow x = y$
- -P xy & P yz ⇒ P xz
- For any assignment of entities in S₁ to the variables

Example 1 (cont.)

- Structure $A_1 = (S_1, R_1)$ with
 - $S_1 = \{a,b\}$
 - $R_1 = \{(a,a), (a,b), (b,b)\}$

х	Pxx
a	T

Example 1 (cont.)

- Structure $A_1 = (S_1, R_1)$ with
 - $S_1 = \{a,b\}$
 - $R_1 = \{(a,a), (a,b), (b,b)\}$

x	Pxx
a	T
b	T

Example 1 (cont.)

- Structure $A_1 = (S_1, R_1)$ with
 - $S_1 = \{a,b\}$ $R_1 = \{(a,a), (a,b), (b,b)\}$

x	Pxx
a	T
b	Т

Example 1 (cont)

- Structure $A_1 = (S_1, R_1)$ with $S_1 = \{a,b\}$ • $R_1 = \{(a,a), (a,b), (b,b)\}$
- P xy & P yx \Rightarrow x = y

x	у	P xy	P yx	⇒	x = y
a	a	T	T	T	T

Example 1 (cont)

- Structure $A_1 = (S_1, R_1)$ with $S_1 = \{a,b\}$ • $R_1 = \{(a,a), (a,b), (b,b)\}$
- P xy & P yx \Rightarrow x = y

x	у	P xy	P yx	⇒	x = y	
a	a	T	T	T	T	
a	ь	T	F	T	F	

Example 1 (cont)

- $$\begin{split} \bullet & \text{ Structure } A_1 = (S_1, R_1) \text{ with } \\ \bullet & S_1 = \{a, b\} \\ \bullet & R_1 = \{(a, a), (a, b), (b, b) \} \\ \bullet & P \text{ } xy \text{ \& } P \text{ } yx \Rightarrow x = y \end{split}$$

х	у	P xy	P yx	⇒	x = y
a	a	T	T	T	T
a	b	T	F	T	F
b	a	F	T	T	F

Example 1 (cont)

- Structure $A_1 = (S_1, R_1)$ with $S_1 = \{a,b\}$ • $R_1 = \{(a,a), (a,b), (b,b)\}$
- P xy & P yx \Rightarrow x = y

x	у	P xy	P yx	↑	x = y
a	a	T	T	T	T
a	b	T	F	T	F
b	a	F	T	T	F
b	b	T	T	T	T

Example 1 (cont)

- Structure $A_1 = (S_1, R_1)$ with $S_1 = \{a,b\}$ • $R_1 = \{(a,a), (a,b), (b,b)\}$
- P xy & P yx \Rightarrow x = y

x	у	P xy	P yx	⇒	x = y
a	a	T	T	T	T
a	b	T	F	T	F
b	a	F	T	T	F
b	b	T	T	T	T

Example 1 (cont)

- Structure $A_1 = (S_1, R_1)$ with

 - $S_1 = \{a,b\}$ $R_1 = \{(a,a), (a,b), (b,b)\}$
- P xy & P yz \Rightarrow P xz

х	у	z	P xy	P yz	⇒	P xz
a	a	b	T	T	T	T

Example 1 (cont)

- Structure $A_1 = (S_1, R_1)$ with $S_1 = \{a,b\}$ • $R_1 = \{(a,a), (a,b), (b,b)\}$
- P xy & P yz \Rightarrow P xz

х	у	z	P xy	P yz	⇒	P xz
a	a	b	T	T	T	T
a	b	a	T	F	T	T

Example 1 (cont)

- Structure $A_1 = (S_1, R_1)$ with $S_1 = \{a,b\}$ $R_1 = \{(a,a), (a,b), (b,b)\}$
- P xy & P yz \Rightarrow P xz

У	z	P xy	P yz	\Rightarrow	P xz
a	b	T	T	T	T
b	a	T	F	T	T
a	b	F	T	T	T
	b	a b b a	a b T b a T	a b T T b a T F	a b T T T T T T T T T T T T T T T T T T

Example 1 (cont)

- Structure $A_1 = (S_1, R_1)$ with $S_1 = \{a,b\}$ • $R_1 = \{(a,a), (a,b), (b,b)\}$

- P xy & P yz \Rightarrow P xz

X	У	Z	P xy	P yz	⇒	P xz
a	a	b	T	T	T	T
a	b	a	T	F	T	T
b	a	b	F	T	T	T
b	b	a	T	F	T	F

Example 1 (cont)

- Structure $A_1 = (S_1, R_1)$ with

 - S₁ = {a,b} R₁ = {(a,a), (a,b), (b,b) }
- P xy & P yz \Rightarrow P xz

x	у	z	P xy	P yz	⇒	P xz
a	a	b	T	T	T	T
a	b	a	T	F	T	T
b	a	b	F	T	T	T
b	b	a	T	F	T	F

Example 1 (cont)

- Structure $A_1 = (S_1, R_1)$ with $S_1 = \{a,b\}$ • $R_1 = \{(a,a), (a,b), (b,b)\}$

is a model of the axioms of ground mereology

- M1
- M2
- $P xy & P yx \Rightarrow x = y$
- M3
- $P\;xy\;\&\;P\;yz \Rightarrow P\;xz$

Example 2

- Structure $A_2 = (S_2, R_2)$ with $S_2 = \{a,b,c\}$ $R_2 = \{(a,a), (a,b), (b,b), (b,c), (cc)\}$
- We interpret P as R₂
- We then need to verify that the axioms
 - P xx
 - $-P xy & P yx \Rightarrow x = y$
 - $-P xy & P yz \Rightarrow P xz$
- For any assignment of entities in S₂ to the variables

Example 2

- Structure $A_2 = (S_2, R_2)$ with

 - $S_2 = \{a,b,c\}$ $R_2 = \{(a,a), (a,b), (b,b), (b,c), (cc)\}$
- P xy & P yz \Rightarrow P xz

Example 2 (cont.)

- Structure $A_2 = (S_2, R_2)$ with

 - S₂ = {a,b,c} R₂ = {(a,a), (a,b), (b,b), (b,c),(cc)}
- P xy & P yz \Rightarrow P xz

х	у	z	P xy	P yz	⇒	P xz
 a	b	c	Т	Т	F	F

Example 2 (cont.)

- Structure $A_2 = (S_2, R_2)$ with $S_2 = \{a,b,c\}$ $R_2 = \{(a,a), (a,b), (b,b), (b,c), (cc)\}$
- P xy & P yz \Rightarrow P xz

x	у	z	P xy	P yz	\Rightarrow	P xz
a	Ь	С	Т	Т	F	F

• A2 is NOT a model of ground mereology

Some defined primitives of ground mereology

Ground mereology - M

- Axioms
- $-\,M1\qquad P\;xx$
- $M2 \qquad P xy & P yx \Rightarrow x = y$ M3 \qquad P xy & P yz \Rightarrow P xz
- Defined relations:
 - Overlap
- Underlap - Proper part

Definition of overlap

 $D_O: O xy iff (\exists z)(P zx & P zy)$

Definition of underlap D_U: U xy iff (∃z)(P xz & P yz)

Remainder: Formal axiomatic theories of mereology

- · Formulated in standard first or second order logic
- Include special symbols which are supposed to
- designate mereological relations or functions

 Some relations are treated as *primitives*: they are not defined. Axioms stipulating their logical
- Properties are included the theory
 Other relations are defined in terms of the primitives

Remainder: Formal axiomatic theories of mereology (2)

- A consistent formal theory has models:
- models are collections of individuals
- which satisfy the axioms of the theory when the primitives are interpreted in a certain way with respect to these individuals.

Exploring the logical consequences of our axioms and definitions

• Proving theorems using the underlying logical calculus

Axioms definitions Rules of inference

Theorems

Rules of inference (Copi 1979)

Rules of inference (Copi 1979)

```
 \begin{array}{lll} \bullet \  \, \text{Modus Tollens (MT)} & \dots & \\ p \Rightarrow q & 2 & P \  \, \text{Ny \& P yx} \Rightarrow x = y \\ \neg q & 3 & \neg (x = y) \\ \dots \neg p & 4 & \neg (P \  \, \text{Ny \& P yx}) & 2,3 \  \, \text{MP} \\ \dots & \dots & \dots & \dots \end{array}
```

Rules of inference (Copi 1979)

• Hypothetical Syllogism (HS) 2 P xy & P yz ⇒ P xz $p \Rightarrow q$ 3 P zx ⇒ O xz $q \Rightarrow r$ 4 P xy & P yz ⇒ O xz 2,3 HS ∴ $p \Rightarrow r$...

Rules of inference (Copi 1979)

• Disjunctive Syllogism ...
(DS) 2 P xy or P yz
p or q 3 ¬P xy
¬p 4 P yz 2,3 DS
∴q ...

Rules of inference (Copi 1979)

 Constructive Dilemma (CD) $- (p \Rightarrow q) \& (r \Rightarrow s), p \text{ or } r$ • Destructive Dilemma (DD) - (p ⇒ q) & (r ⇒ s), ¬q or ¬s

• Simplification (Simp) - p & q

• Conjunction (conj) ∴ р ∴ p & q - p, q Addition (add) ∴ p or q - p

Rules of inference (Copi 1979)

· Rule of replacement: - Any logically equivalent expressions can be replaced by each other whenever they occur by each other whenever $-\neg(p \& q) \Leftrightarrow \neg p \text{ or } \neg q$ $-\neg(p \text{ or } y) \Leftrightarrow \neg p \& \neg q$ $-(p \text{ or } q) \Leftrightarrow (q \text{ or } p)$ DeM comm $- (p & q) \Leftrightarrow (q & p)$ $- (p & (q & r)) \Leftrightarrow (p & q) & r$ comm asso $- p \Leftrightarrow \neg \neg p$ DN

Rule of replacement: example

3 P xy & ¬(P yz & P zu) 4 P xy & $(\neg P yz \text{ or } \neg P zu)$ 3 DeM 5 (P xy & \neg P yz) or (P xy & \neg P zu) 4 Dist

Rules of inference (Copi 1979)

· Rule of conditional proof:

1-n CP n+1 $q \Rightarrow q$

Example Condional Proof

 $M \mid \text{--} PP \ xy \Rightarrow P \ xy$ 1 PP xy ass P xy & ¬P yx $1~D_{PP}$ 3 P xy 3 simp $4 \quad PP \; xy \Rightarrow P \; xy$ 1-3 CP

Rules of inference (Copi 1979)

Indirect proofs ¬РР хх 1. PP xx 2. P xx & ¬P xx $1 D_{PP}$ $q \& \neg q$ 3. ¬PP xx 1-2 I

Quantification rules (Copi 1979)

· Universal instantiation

- (x)(P xy)

UI • P xy
• P yy
• P ay UI UI

• $P xy \Rightarrow (\exists z)(P zx)$

 $-(x)(Pxy \Rightarrow (\exists z)(Pzx))$ • P $zy \Rightarrow (3z)(Pz\overline{z})$ WRONG

Example

 $3 \neg P zz or P xy$ M1 4 (x) Pxx 5 P zz 4 UI 6 P xy 3,5 DS

Quantification rules (Copi 1979)

· Existential generalization - P xy

• (∃x)(P xy)

• (∃y)(P xy) EG

- P ay
• (∃x)(P xy) EG – Pyy • (∃x)(P xy)

Example

... 4 P zx & P zy 5 (3z)(P zx & P zy) 4 EG 6 O xy 5 D₀ ...

Quantification rules (Copi 1979)

· Existential instantiation

Example proof

Quantification rules (Copi 1979)

· Universal generalization

...
 P xy
 (x) Pxy
 UG

- Except if x occurs free in some open assumption:
 I P xy
 ass
 ...
 n P xz
 n+1 (x) P xz WRONG

 $n+2 \qquad P \; xy \Longrightarrow (x) \; P \; xz \; \; 1\text{-}n+2 \; CP$

More equivalences and rules

Theorems of Ground Mereology

• M |-- O xx

• M \mid -- O $xy \Rightarrow$ O yx

• ...

• M \mid -- P xy \Leftrightarrow (PP xy or x=y)

• M |-- P xy & \neg (x=y) \Rightarrow PP xy

• ...

Some example proofs

```
P \; xy \; \& \; \neg \; (x=y) \Rightarrow PP \; xy
1 P xy & \neg (x=y)
2 ¬ (x=y)
                                         1 simp
3 P xy & P yx \Rightarrow x = y
                                         M2 UI
4 ¬ (P xy & P yx)
                                         2,3 MT
5 \neg P xy or \neg P yx
                                         4 DeM
6 P xy
                                         1 simp
7 ¬ P yx
                                         5,6 DS
8 P xy & \neg P yx
                                         6,7 conj
9 PP xy
                                         8~\mathrm{D_{PP}}
                                         1-9 CP
10 P xy & \neg (x=y) \Rightarrow PP xy
```

Рx	$y \Rightarrow (PP \ xy \ or \ x=y)$	
1	P xy	ass
2	¬(PP xy or x=y)	ass
3	¬PP xy & ¬ x=y	2 DeM
4	¬ x=y	3 simp
5	$P xy & P yx \Rightarrow x = y$	P2 UI
6	¬(P xy & P yx)	5,4 MT
7	$\neg P xy or \neg P yx$	6 DeM
8	$\neg P yx$	7,1 DS
9	P xy & ¬ P yx	1,8 conj
10	PP xy	9 D _{PP}
11	PP xy & ¬PP xy	10,(3 simp) conj
12	(PP xy or x=y)	2-11 IP
13	$P xy \Rightarrow (PP xy \text{ or } x=y)$	1-12 CP

```
(PP xy or x=y) \Rightarrow P xy
1. PP xy or x=y
2. PP xy
                                                             ass

    P xy & ¬ P yx
    P xy

                                                            2 D<sub>PP</sub>
3 simp
5. PP xy \Rightarrow P xy
                                                             2-4 CP
6. x = y
7. P xx
                                                             M1 UI
8. P xy
                                                             6,7 Id
9. x=y \Rightarrow P xy
                                                             6-8 CP
10. (\overrightarrow{PP} xy \Rightarrow \overrightarrow{P} xy) \& (x=y \Rightarrow P xy)
                                                             5,9 conj
10, 1 CD
11. P xy or P xy
13. (PP xy or x=y) \Rightarrow P xy
                                                             1-12 CP
```

```
PP\ xy \Rightarrow \neg\ PP\ yx
1 PP xy
                                   ass
                                  1 D<sub>pp</sub>
2 P xy & ¬ P yx
3 PP yx
                                  ass
4 P yx & ¬ P xy
                                  3 D_{PP}
                                  (2, 4 simp) conj
5 P xy & ¬ P xy
6 ¬ PP yx
                                  3-5 IP
7 PP xy \Rightarrow \neg PP yx
                                   1-6 CP
```

PP xy & PP yz	:⇒ PP xz	
 PP xy & 	PP yz	ass
(P xy &	¬P yx) & (P yz & ¬P yz)	1 D _{PP}
 P xy & I 	yz	2 simp
4. P xz		3, M3 MP
 P zx 		ass
P xz & F	zx	4,5 conj
 x = z 		6, M2 MP
PP yz		1 simp
9. PP yz ⇒	P yz	Th UI
10. P yz		8,9 MP
11. ¬P yx		2 simp
12. ¬P yz		7,11 Id
13. Pyz&-	-P yz	10,12 conj
14. ¬ P zx		5-13 CP
15. P xz & -	P zx	4, 14 conj
16. PP xz		15 D _{PP}
17. PP xy &	$PP yz \Rightarrow PP xz$	1-17 CP

Equivalent axiomatization

- · P. Simons in 'Parts'
 - ¬PP xx
 - PP xy ⇒ \neg PP yx
 - PP xy & PP yz ⇒ PP xz
 - $-P xy =_{df} P xy \& \neg x = y$

Summary

Usage of the word part in natural language

- 1. The handle is part of the cup.
- This cap is part of my pen.
 The left half is your part of the cake.
 The US is part of North America.
- The contents of this bag is only part of what I bought.
- That comer is part of the living room.
 The outermost points are part of the perimeter.
 The first act was the best part of the play.

Formal axiomatic theories of mereology

- · Formulated in standard first or second order logic
- Include special symbols which are supposed to designate mereological relations or functions
- Some relations are treated as *primitives*: they are not defined. Axioms stipulating their logical properties are included the theory
- · Other relations are defined in terms of the primitives

Formal axiomatic theories of mereology (2)

- · A consistent formal theory has models:
 - models are collections of individuals
 - which satisfy the axioms of the theory when the primitives are interpreted in a certain way with respect to these individuals.

The non-logical primitive

- P xy
- Intended interpretation: \boldsymbol{x} is a part of \boldsymbol{y}
- examples
 - P your-hand you
 - P MountEverest Earth
 - P xy

Axioms of Ground mereology - \boldsymbol{M}

- M2 $P xy & P yx \Rightarrow x = y$
- $P xy & P yz \Rightarrow P xz$ • M3

Models

- An algebraic structure A = (S, R) is a model of a set of axioms with a single non-logical primitive P if and only if
- The non-logical primitive P is interpreted as the the relation R of the structure
 The axioms are true for each assignment of the variables with entities of the domain S

Ground mereology - M

- Axioms
- M1 P xx M2 P xy & P yx \Rightarrow x = y M3 P xy & P yz \Rightarrow P xz Defined relations:

 - Overlap
 - Underlap
 - Proper part

Some Theorems of Ground Mereology

- M |-- O xx
- M |-- O xy ⇒ O yx
- M \mid -- P xy \Leftrightarrow (PP xy or x=y)
- M |-- ¬PP xx
- M \mid -- PP xy $\Rightarrow \neg$ PP yx
- M |-- PP xy & PP yz ⇒ PP xz M |-- P xy & ¬ (x=y) ⇒ PP xy

Assignments due by Sep. 10 Part 1

- - $-M \mid --(z)(P zx \Leftrightarrow P zy) \Leftrightarrow x = y$
- $-M \mid -P xy \Rightarrow (z)(O zx \Rightarrow O zy)$