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Abstract

We represent granular partitions as triples consisting of a rooted tree structure
as first component, a domain satisfying the axioms of General Extensional Mere-
ology as second component, and a (projection) mapping of the first into the second
as a third component. We show that granular partitions allow us to model impor-
tant aspects of the granular and selective character of common sense. We define
equivalence and ordering relations among those granular partitions and we show
that granular partitions form frame Structures in the sense of [Res00]. This will
provide the foundations for a logic which has a semantic that is based on granular
partitions.

1 Introduction

Human beings have a variety of ways of dividing up, classifying, mapping, sorting and
listing the objects in reality. The theory of granular partitions presented by Bittner and
Smith in [BS02] seeks to provide a general and unified basis for understanding such
phenomena in formal terms. Its aim is to contribute to an understanding of the granular
and selective character of human common sense. Related work in this area includes
[Hob85, BWJ98, Ste, Ste00, Don01, Bit02].

The theory of granular partitions has two parts. The first is a theory of classification
(Theory A). It describes the tree structures of these classificatory systems. The second
is a theory of reference or intentionality (Theory B). It provides an account of how
those tree-structures relate to objects in reality.

Consider, for example, the left part of Figure 1. At the left hand side we have a tree-
representation of the (incomplete) subdivision of the category food into subcategories
fruit and vegetables. Theory A governs how to build nested cell structures in such a
way that they correspond to the mentioned category trees. In the middle of Figure 1
such a cell structure is represented as Venn-diagram. Theory B governs the way these
cell-structures project onto reality indicated by the arrows connecting the middle and
the right parts of the Figure.

Bittner and Smith use projection to characterize the relation between the cells in a
partition and objects in reality. Briefly, we can think of cells as being projected onto
objects in something like the way in which flashlights are projected upon the objects
which fall within their purview. This projection corresponds to the way proper names
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Figure 1: Relationships between cells and objects

project onto or refer to the objects they denote and to the way our acts of perception are
related to their objects. (Projection is close to what philosophers call ‘intentionality’
[Ser83].) Consider 1. Here the cell labeled “Vegetables’ projects this way onto the
mereological sum of all vegetables in reality.

Granular partitions are not only at work in the realm of classes of things such as
food, vegetables, etc. but also in the realm of individuals. Consider Figure 2. On the
left hand side we have the tree representation of certain aspects of the mereological
structure of your friend Fred. In the middle we have a corresponding cell structure and
at the right hand side we have the target domain — your friend Fred. We assume the
obvious ‘Head’” — head, ‘Limbs’ — left arm + right arm + left leg + right leg ...
projection.
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Figure 2: Relationships between cells and objects (2)

All granular partitions both granular and selective: Granularity of projection means
that a partition can project onto a whole without projecting onto all of its parts; Selec-
tivity of projection means that a partition does not project onto all objects. Consider
Figure 2. The partition is granular since there is a cell projecting onto Fred’s head but
there are no cells projecting onto parts of Fred’s head such as his nose, his ears, etc.
and similarly for the other cells which do not have a subcells.

In order to see what selectivity means, consider the cell structure in the middle of
Figure 2. Here we have only the subcells ‘Head’ and ‘Limbs’. There is no cell ‘Torso’
in this cell structure. This may be because this cell tree is a part of a partition which
deals only with parts of Fred that ‘stick out of the torso’. In this case, the partition
selectively projects only on parts which are relevant in the given context.

In their paper [BS02], Bittner and Smith focus on single granular partitions and
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Figure 3: Relationships between cells and objects (3)

their projective relation to reality. In the present paper, we will talk about the relations
between granular partitions and define structures on sets of granular partitions. Con-
sider Figures 2 and 3. The granular partitions in both figures project onto Fred, but the
partition in Figure 3 includes more detail than the partition in Figure 2. In this paper,
we will define a refinementrelation on partitions according to which the partition in
Figure 3 is a refinement of the partition in Figure 2.

To better understand these kinds of relations among granular partitions, we will
introduce a class of structures called labeled granular partitions and define ordering in
these structures. We will show that classes of these structures form frame structures in
the sense of [Res00].

2 Labeed granular partitions

In this section, we expand the theory of granular partitions presented in [BS02] in two
ways. First, we make the mereological structure of the partition cells and the target
domain explicit. Second, we add a mechanism for labeling the cells in a partition. We
achieve both of these aims by introducing labeled granular partitions which can be
seen as a more sophisticated version of the granular partitions of [BS02].

We begin by presenting the two mereological systems that are needed for the defi-
nition of labeled granular partitions.

2.1 Systems of mereology

The primitive relation of mereology is the part-of relation. This binary relation is re-
flexive, antisymmetric, and transitive, i.e., a partial ordering relation. As pointed out
by authors such as [WCH87, GP95, AFG96], there are different kinds of parthood re-
lations which can be further classified by additional axioms. In this paper two kinds
parthood relations are of relevance:

1. The parthood relation characterized by the axiomatic system of general exten-
sional mereology (GEM) [Sim87, CV99]. We will use the symbol < for this
relation. We call the members of the domains of GEM models objects.*

1'Object’ hereis used in avery wide sense, to include also scattered mereological sums. Thus a partition



2. The parthood relation characterized by what we call rooted tree mereology (RTM).
We will use the symbol C for this relation.? We call the members of the domains
of RTM models cells.

To give the additional axioms for GEM and RTM, we need to introduce an addi-
tional mereological relation. We say that x and y overlap if and only if there is some
z that is a part of both x and y. We will use the same symbol O for overlap in both
GEM and RTM. The formal definitions of the overlap relation in GEM and RTM can
be stated as follows.

DO-GEM z0y =3z2(2 <z Az <y)
DO-RTM zOy=32(2CxzAzCy)

In general extensional mereology (GEM) there are two additional axioms besides
those requiring < to be a partial ordering [Sim87]: the axiom of extensionality and
the summation axiom. The axiom of extensionallity tells us that if every object that
overlaps x also overlaps y, then x is a part of y:

AE-GEM Vz(20x — 20y) »x <y

Note that it follows from AE-GEM and the anti-symmetry of < that O is exten-
sional in GEM.

TE-GEM Vz(20z < 20y) »z =y

The summation axiom tells us that, for any model of GEM, if any member of the
domain satisfies the formula ¢ then the sum of all members of the domain that satisfy
¢ is also included in the domain.3

AS-GEM  3z¢zr — A2Vy(yOz + Jz(px A yOr))

Structures which are models of rooted tree mereology (RTM) form rooted trees.
This is ensured by the axioms below, which are added to the axioms requiring C to be
a partial ordering.

We use the following definition in the axioms.

DI-RTM zCy=zCyAV2(zC2Cy—z=zVz=y)

When x C y, we say that x is an immediate subcell of y.
We now give the following axioms for the partial ordering C:

ARo00t-RTM  JzVzz C 2

of the anima kingdom might involve a cell labeled cat, which projects onto the single object which is the
mereological sum of all live cats.

2|t is important not to confuse this interpretation of C with the (more standard) subset relation in set
theory.

3In the axiom, ¢ can be any fi rst-order formulain which x occurs free.



ARo00t-RTM requires that each model, Z, of RTM have a maximal cell. It follows from
the anti-symmetry of C that this maximal cell is unique. We will let root(Z) stand for
the unique maximal cell of the cell tree Z.

AChain-RTM  each cell z € Z there is a finite chain 2Cx C .. . 2, Croot(Z)
of immediate subcells connecting z to root(2);
AO-RTM 2Oy -z CyVyCx

AO-RTM restricts overlap to cells that stand in the subcell relation. Thus, there are no
instances of proper overlap in RTM models. Notice that it follows from AO-RTM and
the anti-symmetry of C that the graph induced by C contains no circles, i.e. is a tree.

Finally, because the cell trees in partitions are cognitive artifacts, we add the fol-
lowing axiom.

AFIin-RTM  There are only finitely many cells in any model of RTM.

Note that models of RTM need not satisfy either the axiom of extensionality or
the summation axiom. The axiom of extensionality will fail in models that include
a cell, x, which has exactly one immediate proper subcell, y. In this case, X and y
will be distinct even though they overlap exactly the same cells. We allow these kinds
of models because we want our cell trees to be able to represent the selectivity of
human cognition. For example, in a partition representing the parts of a particular
yacht, Maude, the cell representing the whole boat, Maude, may have only one proper
subcell representing, Maude’s engine, because in a particular context we may only be
interested in Maude’s engine parts.

We do not require that the summation axiom hold, because the classes in tax-
onomies do not in general combine to form additional classes in the taxonomy. For
example, in the standard taxonomy of the animal kingdom, there is no species that is
the mereological sum of rabbits and jellyfish.

2.2 Granular partitions

We introduce the notation GEM and RT M to denote the classes of structures satisfy-
ing GEM and RTM.
We now define granular partitions* x as triples of the form

(Z,A,p)

where Z € RT7 M is called the cell tree of the partition, A € GEM is called the target
domain of the partition, and the projection-mapping of signature p : Z — A has the
following properties:

(i) p isaone-one mapping;

(ii) p is order-preserving in the sense that if z; C 25 then p(z1) < p(z2). This
ensures that the tree structure in Z does not distort the mereological structure in
A;

4The formalization of granular partition in this paper differs slightly from the one givenin [].



(iii) p is not an empty mapping: 3z,x : p(z) = x. It follows that every granular
partition has at least one cell in its cell tree and at least one object in its target
domain ;

(iv) p is atotal mapping. This equivalent to requiring that granular partitions do not
contain empty cells in the sense of [BS02].

In general the p will be not an onto mapping due to the selective and granular character
of granular partitions.

The formalization of granular partitions presented in this paper corresponds to the
one in [BS02] in the following sense that granular partitions (Z, A, ¢) satisfy the ax-
ioms MA1-4 and MB1-6 in [BS02].

2.3 Labeling

Consider the tree structures in Figure 2 and the way the corresponding cell trees project
onto the individual Fred. The labels on the nodes of the tree and the cells are an
important aspect of the representations of Fred’s parts. This is because without the
labeling the cell tree could as well be projected at anything that is a whole with at least
two parts (e.g., onto you and your left and right leg).

Since a cell tree has finitely many cells, it is always possible to assign strings of
some alphabet « to the cells of a given partition. We now assume that for each partition
there is a first-order language L(«) over the alphabet « with a formal semantics of the
usual sort where the expressions in L(«) are interpreted over the target domain A.

Let (£, A, p) be a granular partition. A labeling for this partition is a mapping ¢
of signature ¢ : a — Z assigning strings of the alphabet « to cells in Z. The labeling
mappings ¢ in general will be partial since finite partitions do not exhaust all strings of
the underlying alphabet. A labeled granular partition then is a quintuple of the form

(2,4,p,0,9)
such that the labeling function ¢ has the following properties:
1. ¢ isone-one, i.e., each cell in the tree Z has a unique label and
2. ¢ isonto, i.e., every cell in Z has a label.

3. Inorder to ensure that labels of cells denote entities in the domain A, we demand
that if ; € « is a label for a cell, (i.e., 3z : ¢(a1) = z), then there is an entity
in A which a; denotes (i.e., A |E 3z : z = o).

Consider the left part of Figure 4. The corresponding labeled granular partition
(Z,A, p,a,¢) has projection and labeling mappings p and ¢ such that the following
holds:

p = ¢(‘mammals’) — mammals, ¢(‘cats’) — cats, ¢(‘dogs’) + dogs. Q)

Here ¢(‘mammals’) stands for “the cell labeled ‘mammals’ ” and mammals refers to
the targeted portions of reality (in this case, the mereological sum of all mammals).
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Figure 4: (left) venn-diagram representation of a granular partition; (right) a missla-
beled granular partition.

Consider the right part of Figure 4. Here we have a ‘missprojection’ or ‘misslabel-
ing’ of the form p((#(‘ldaho’)) = Montana which means that the cell labeled ‘Idaho’
projects onto the piece of land which is usually referred to as Montana. Intuitively
this means that the labeling of this partition is in a certain way incompatible with the
way the fast majority of other partitions which target the same domain are labeled. In
particular, it is incompatible with the way the federal government of the United States
labels their maps (which are special kinds of partitions [BS01]). In this particular case,
the labeling is not only unusual in the sense that it is incompatible with most other la-
belings. It is also wrong in the sense that it is true according to the political conventions
which make this piece of land a state, it is the Federal State Montana.

In order to avoid this kind of ‘missprojection’ or ‘misslabeling’ we also demand:

4. if acell is labeled with the string «;, then the entity denoted by «; is identical to
the entity projected onto by z, i.e., z = ¢(a;) = A = a; = p(2)).

We will discuss the issues of truth and compatibility of labeling in more detail below.
In the remainder of this paper we will sometimes use the notation *‘mammals’ in-
stead of ¢(‘mammals’) to formally express a sentence-fragment like “the cell labeled

‘mammals’ “.

3 Relations between granular partitions

3.1 Refinement and extension relations

Consider the granular partitions (21, A1, p1,a1,¢1) and (22, Aa, pa, @z, ¢2) in Fig-
ures 2 and 3. One can see that the corresponding partitions stand in a kind of refine-
ment relation to each other. We will use the symbol < to refer to this relation and
write (21, A1, p1,a1,01) X (23, Ag, pa, a2, ¢2) to express the fact that the granular
partition (21, Ay, p1, a1, ¢1) isarefined by the granular partition (2, As, p2, az, ¢2).

We give a formal account of the relation < as follows. Assume a set of labeled
granular partitions P with (Z1,Aq, p1,01,¢1), (Z2,Aa, p2,a2,¢2) € P. We then
say that (Zl, A, pP1,01, ¢1) < (ZQ, Ao, p2,02, ¢2) if and onIy if
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Figure 5: Commutative diagram illustration for: (Left) the definition of <; and (Right)
the proof of transitivity of <.

i The target domains are identical, i.e., A; = A,
ii The alphabets underlying the labeling are identical, i.e., a; = as
iii there exists a one-one mapping f : Z; — 2, such that
(a) f isorder-preserving, i.e., if z; C z; then f(z;) C f(z;),
(b) f istarget-preserving, i.e., p1(z) = p2(f(2)), and
(c) fis label-preserving, i.e., ¢2(c;) = f(¢1())

That the target domains A; and the underlying alphabets «; are identical (i + ii)
reflects the fact that we assume one underlying mereologically structured world and
that for each world we label cells of partitions that project at certain parts of this world
with strings of the same alphabet.

The existence of the mapping p with its particular properties (iii) ensures that we
can map cells in Z; to cells in Z, in such a way that: (a) If two cells in z;,z; € 2Z;
are subcells of each other then so are their counterparts in f(z1), f(z2) € Z2; (b) The
target p1(z) of the cell z € Z; is identical to the target p,(f(2)) of its counterpart
f(z) € Z5;and (c) z € Z, and f(z) € Z, have the same labels. In other words we
demand that there exists an order-, label, and target-preserving mapping f such that the
left diagram in Figure 5 commutes.

We can show that the relation < is reflexive (ref) and transitive (tr):

(ref) We have (Z,p,¢) =< (Z, p, #) since the identity map of a cell tree onto itself,
defined by z = id(z) is always order-,label-, and target-preserving.

(tr) For transitivity we have to show that if f : Z; — Zs and g : Z, — Z3 are order-
Jlabel- , and target-preserving then so is their compositiongos : Z; — Z3. That
this is the case can be seen in the right diagram in Figure 5.



In the remainder of this section we consider partitions which stand in the < rela-
tion. We will simplify the notion (2, A, p, a, ¢) for more convenient writing by using
(Z,p,¢) in order to refer to a labeled granular partitions. We can do this because the
target domains and alphabets of those partitions are identical. We now continue by
considering two special cases of refinement: proper refinement and extension.
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Figure 6: Examples of partitions between the relation < holds.

Proper refinement. Consider the left part of Figure 6. We have a partition (2, p, ¢z )
with cells labeled ‘A’ and ‘B’ and ‘A’ C ‘B’ and with ‘A’ projecting onto your friend
Freds’ right arm, i.e., ‘A’ — Freds’ right arm, and the cell labeled ‘B’ projecting onto
Freds whole body ‘B’ — Freds’ body. (In Figure 6 we use the stretched bracket < to
indicate that *C’ targets Fred’s whole body.) We also have a partition (Z,, py, ¢,) With
‘A’ C ‘C’ C ‘B’ with ‘A’ and ‘B’ as above and with ‘C’ projecting onto Fred’s upper
body, i.e., ‘C” — Freds’ upper body. (In the figure we use the small bracket < to indi-
cate that ‘A’ targets Fred’s upper body.) It is easy to see that the induced mapping f :
Z, — 2, is order-, identity-, and label-preserving. Thus (2, pz, ¢2) = (Zy, py, y)-

The situation in the middle part of Figure 6 is similar. We have (Z;, p,, ) as
before. However we have a refinement (Z,, p.., ¢..) in which the cell labeled ‘C’ is not
a supercell of ‘A’ and in which ‘C’ projects onto Freds’ left arm, i.e., ‘C’ — Freds’
left arm. Again, the induced mapping g : Z, — Z, is order-, identity-, and label-
preserving. Thus (24, pz, ¢2) X (2, pz, ¢-) and hence (2, pz, ) X (22, pz, ¢2)-

In the right part of Figure 6, we have a refinement of (Z,, p., ¢2) by (Z4, pu, du)
similar to the refinement in the left part of the figure. The refinement partition (£, py, ¢,)
and (Z,, pu, ¢) recognize the same parts of Fred: Fred as a whole, Freds upper
body, and Freds right arm. They differ however in the following respect: The parti-
tion (Zy, py, ¢y) recognizes the fact that Freds right arm is a part of Freds upper body.
This aspect of mereological ordering is traced over in the partition (Z., pu, ¢u)-

Note that not only is (2, p., ¢,) is a refinement of (Z;, p,, ¢,). Itis also a re-
finement of (Z,, py, ¢,). To see this consider the mapping h : Z,, — Z, mapping
cells in Z,, to cells with matching labels in Z,. Clearly, h is order-, identity-, and
label-preserving, hence (2, py, ¢u) =X (24, pz, ®y). On the other hand the partitions
(Zy,py, dy) and (2., p., ¢,) are not comparable with respect to < since the cell la-
beled ‘C* in Z, and the cell labeled ‘C” in Z, target different parts of Freds body.
Therefore no commutative diagram like the one in the left of Figure 5 can be con-
structed for the two partitions.



All of the above refinement relations in Figure 6 are examples of what we call
proper refinement. In proper refinement the object targeted by the root cell — the cell
‘B’ in Figure 6 — remains the same. A proper refinement can target additional objects as
long as these objects are parts of objects targeted by the original partition (e.g., z < y
in the figure). Or, a proper refinement may target the same set of objects but include
more information about mereological relations between objects (e.g., u < y in the
figure).

Extension. As an example of another way of how a granular partition can be refined
consider a granular partition (21, p1, ¢1) which recognizes the Federal States of the
US and let (25, p2, ¢=2) represent a granular partition which recognizes the Federal
States of the US as well as the states of the European Community together with a
root cell “The United States and the States of the EU’. It is easy to see that we have
(31;P1;¢1) = (ZZ;P2;¢2)-

This is an example of what we will call extensions. When one partition is an ex-
tension of another, then the target of the original root cell is always a proper part of the
extension’s root cell.

Assume (21, p1,¢1) =X (22, p2, ¢2) and consider the corresponding commutative
diagram in the left part of Figure 5. As sketched above, we can further analyze the two
different uses of refinement by considering the projection of those cells in 2, which are
not targeted by the mapping f. Intuitively, in the case of proper refinement those cells
project onto objects in A, which are parts of objects in the image of p1. In the case
of extension, those cells project onto objects in Ay which are not parts of objects in
the image of p;. Formally we define now define the binary relations RP (x is-properly-
refined-by y) and EP (z is-properly-extended-by y) which both are subrelations of <
as follows:

RP((21,p1,01), (22, p2,82)) = (21, p1,61) =X (22, p2, $2) and
V2 € Z3(321 € Z1(p2(22) < p1(21)))-
EP((Z21,p1,81), (22, p2,82)) = (21, p1,61) =X (22, p2, $2) and
_'RP((Zlaplaqsl)a(227p27¢2))'

3.2 Equivalence and ordering

We now continue by defining an equivalence relation on granular partitions (2, p1, ¢1)
and (2., p2, ¢2) by saying that two partitions are equivalent if and only if both stand
in the relation < to each other, i.e.,

(Zlapla¢l) ~ (227p2a¢2) = (Zlap17¢l) j (22;/’2;(}52) A (22;/’2;(}52) j (Zlapla¢1)'

The relation ~ is an equivalence relation, i.e., reflexive, symmetric, and transitive. The
reflexivity of ~ follows immediately from the reflexivity of <.

The symmetry of ~ follows from the symmetric character of its definition. To see
the transitivity of ~ assume (21, p1, ¢1) ~ (22, pa, ¢2) and (22, p2, ¢2) ~ (23, p3, #3).
Therefore we have (Zl, P1, ¢1) < (ZQ, P2, (]52) and (Zg,pz, ¢2) < (Zl, P1, ¢1) and
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similarly (22, p2, ¢2) = (23, p3, ¢3) and (23, p3, #3) X (22, p2, $2). From the tran-
sitivity of < it follows that we have (Z1, p1,¢1) < (Z3,p3, ¢3) and (Zs, ps, ¢3) <
(21, p1,¢1) and hence (21, p1, ¢1) ~ (23, p3, ¢3).

The corresponding set of equivalence classes is defined as

[(Zapa ¢)] = {(Zl7p17¢1) | (Zl7p17¢1) ~ (Zapa ¢)}

The elements of [(Z, p, ¢)] are distinct labeled granular partitions with cell trees that
have identical structure and whose cells have identical labels and target the same ob-
jects in reality. Examples of such an equivalence classes are: (a) Consider several
copies of this paper. Then all instances of the the labeled granular partition shown in
Figure 2 are members of the equivalence class [the-partition-in-this-figure-2] (the same
of course holds for all other partitions in this paper), (b) The set of all current maps of
the federal states of the United States, and (c) The set periodic tables of elements in the
different text books of chemistry.

Consider equivalence classes [(Z1, p1, ¢1)] and [(Z2, p2, ¢2)]. The relation < now
induces a partial ordering < as follows:

[(Z1,p1,91)] K [(Z2, p2, $2)] = (21, p1,01) = (22, p2, $2) 2

To show that < is well defined suppose (2, p1, 1) = (22, p2, ¢2) and (25, pz, ¢z) €
[31;P1;¢1] and (Zyapy7¢y) € [Z2ap2;¢2]- Then (Zz;pza(bz) = (Zlap1;¢1) and
(ZQJ P2, ¢2) j (Zya Py> ¢y) By tranSitiVity of j! (Zza Pz ¢z) j (Zya Py> ¢y)

The relation < is a partial ordering. The reflexivity and transitivity of < im-
mediately follow from the reflexivity and transitivity of <. It remains to show that
& is antisymmetric, i.e., that if [(Z1, p1, $1)] K [(Z2, p2, $2)] and [(Z2, p2, P2)] K
[(Z1, p1,¢1)] then [(Z1, p1, d1)] = [(Z2, p2, P2)]. 1T [(21, p1,01)] K [(Z2,p2,¢2)]
and [(Zz,p2,¢2)] < [(Zl,p1,¢1)] holds then so does (Zl,p1,¢1) < (ZQ,pz, ¢2)
and (Zg,pz, ¢2) < (Zl,pl, (z)l) Hence we have (Zl,pl, ¢1) ~ (Zz,pg, ¢2) and thus
[(Zla P1, ¢1)] = [(223 P25 ¢2)]

In the remainder we will write [Z, p, ¢] instead of [(Z, p, ¢)] to simplify the nota-
tion.

3.3 Composition of granular partitions

Consider Figure 7. We have a granular partition (Zgr,, prr, orr) Whose cells project
onto the left part of Freds body (FL) and we have a granular partition (Zrg, prr, ¢rR)
whose cells project onto the right part of Freds body (FR). We now want to define a
composition operation comp , which when applied to (Zrr, prr, $rr) and (Zrr, prr, oFR),
yields the partition (Zwr, pwr, ¢wr) whose cells target the left as well as the right
part of Freds body, i.e., whole Fred (WF), as indicated in the figure.

We define a ternary relation comp as follows:

comp (Zw;pz:¢w)(zyapya¢y)(ZZapz:¢Z) = (Zz,pz;¢z) = (Zz,pzaflSZ) A
(Zy:py:¢y) = (Zz:pza¢z)'

This definition if well-defined since the definition of < is well defined. Since < is re-
flexive we have comp (2, pe, ¢2)(Ze; Pz, Pz )(Ze, pe, ¢ ) and from the definition of

11
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Figure 7: Composition of partitions

comp it follows immediately that it is commutative in the first two arguments, i.e., if
comp (Zz, pz, 9z )(Zy, Py, ¢y) (22, pz, =) thencomp (2, py, ¢y) (22, pz, $2) (22, pz, $2)-
Given this composition relation one can ask under which circumstances composi-
tion is an operation and under which circumstances this operation then is associative.
This discussion however is omitted here due to space limitations.
Consider the equivalence classes [Z1, p1, $1], [ 22, p2, ¢2], and [Z3, p3, ¢3] the com-
position relation comp now induces a corresponding relation @ as follows

®[Zlapla ¢1][Z2ap2a ¢2][Z3ap33¢3] = comp (Zlap1a¢1)(223p2a¢2)(233p3a¢3)'

To see that @ is well-defined assume ®[Z, p1, $1][ 22, p2, $2][Z3, p3, ¢3]. From Defi-
nition 2 it follows that we have [21, p1, ¢1] < [Z3, p3, ¢3] and [ 22, p2, ¢2] K [Z3, p3, ¢3].
Now chose (25, pz, ¢z) € [Z1, p1, $1], (Zya Py> ¢y) € (22, p2,¢2],and (2, p;, ¢2) €
(23, p3,¢3]. Therefore we have (24, pz, ¢z) 2 (2, p,¢-) and (Zyapya¢y) =
(22, pz,¢=) and hence comp (2, pz, ¢2) (22, pz, 92) (22, pz, ¢2)-

4 Partition frames

Let P be the set of labeled granular partitions which target the domain A and which
cells are labeled with strings of the alphabet . Now let P = {[z]~ | x € P} be the
set of equivalence classes which are induced by the equivalence relation ~. We call
(P, <, ®) a partition frame.

We will show that < has the properties Restall [Res00] calls plumb positive binary
accessibility relation and plumb negative binary accessibility relation and that & is a
plumb ternary accessibility relation in Restall’s sense, and that P is what Restall calls
a truthset.

Let X be a set and let < be a partial order on X. A relation S is a plump binary
positive accessibility relation if and only if

Ve, o', y,y' € X : (ifzSyandz’ <z andy < y') then z' Sy’ .
A relation C is a plumb negative binary accessibility relation if and only if

Ve, z',y,y' € X : (ifzCy and 2’ < z and y' < y) then z'Cy'.
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We now take the underlying partially ordered set to be the set of equivalence classes
of labeled granular partitions (P, <). That <« has the properties of a plump positive
binary accessibility relation and a plump negative binary accessibility relation follows
immediately the definition of < and from the transitivity of <.

Let X be defined as above. A relation R is a plumb ternary accessibility relation if
and only if

Vo,y,z',y', 2,2 if Reyzand 2’ < zandy' <y and z < 2’ then Ra'y'%’.

Again we take (P, <) as the underlying partially ordered set and we take @& to be
the plumb ternary accessibility relation R. To see that & indeed is a plumb ternary
accessibility relation consider the following. From the well formedness of the defini-
tion of « it follows that it is sufficient to consider arbitrary (Z, p1, 1) € [Z1, p1, d1],
(Za, p2, $2) € [Z2, p2, P=], etc. and to demonstrate the property for comp. To see that
comp has this property consider the following: If comp (21, p1, ¢1)(Z2, p2, #2)(Z3, p3, ¢3)
holds then we have (21, p1, ¢1) = (Z3, ps, ¢3) and (22, p2, ¢2) = (Z3, p3, ¢3) by the
definition of comp . Therefore we have (Z;, pz, ¢) < (Z1,p1,01) 2 (Z3,p3,¢3) =
(ZZ) Pzs ¢Z) and (Zya Py (by) = (Z2a P2, ¢2) = (237 P35 ¢3) = (Zza Pzs ¢Z) By tran-
sitivity it follows that (2, pz,¢2) = (22, p2,¢2) and (Zy, py, dy) = (22,2, $2)
and therefore comp (2, pe, 92)(Zy, py, ¢y ) (22, pz, P2).

Let X be defined as above and R be a ternary accessibility relation. Restall calls a
set T C X atruthset if and only if

Vz,y € X(z < yifandonly if 3z € T(Rzzyand Rzzy))

Again we take (P, <) as the underlying partially ordered set and we take @ to be
the plumb ternary accessibility relation. That P is a truthset then follows immediately
from the definition of @ .

5 Relation between partitions and formulas

So far we only considered the relationship of labeling between the strings of some al-
phabet o and cells in granular partitions. The strings in « hereby where understood
implicitly in a twofold manner: (i) as labels of cells, and (ii) as names of entities
which are targeted by the cells they label (e.g., Figures 6 and 7). We now consider
the partition-theoretic semantics of a prepositional logic £(«az) over the alphabet as.
The alphabet a5 is obtained from « by transforming the name «; € « into the prepo-
sition (3z : * = ;) € az. We use p,p1,q, ... as names of variables ranging over
prepositions of the form ‘3z : . = «a;’.

The logic £(az) then is obtained as follows: p,p1,q, ... are atomic formulas in
L(az). A, B,... are complex formulas which are defined recursively as follows: If
A,B € L{az)thensoare ANB, AV B,A— B,AoB,-A,UA,and 0A. X,Y,
and Z are sets of formulas. If X and Y € £(a3) then so are X,Y and X ;Y where
the punctation marks , and ; refer to different ways of combining sets of formulas in
;C(CG).
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Let £(az) be a partition logic, let IT = [(Z, A, p, a, ¢)] be an equivalence class
of granular partitions as defined above, and let p be an atomic formula of the form
Jdz(z = ;). We now define:

Mikp=Vr e I3z € Z; : ¢r(0y) = 2 A pr(2) E Jz(z = o)) (3)

IT IF p then is interpreted as ‘The partitions 7 € II support that p holds’. We write
IT Ik pif and only if =(IL IF p).
We then can define the interpretation of complex formulas as follows:

IIFAAB = HIAandIII-B
IIFAVB = HMAorIFB
MIFOA = VIL(ifII ST then I I A)
OIF0A = 3M(ifI ST then I I A)
OIF-A = VIL(ifIICTthenm If A
OIF-A = VIL(ifll; CIthenm If A

6 Conclusions and future work
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